Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

2- methyl cyclohexanone, photolysis

A pressure increase, brought about by an increase in the concentration of the ketone or by the addition of an inert gas, enhances the formation of the unsaturated aldehyde as compared to that of CO. The value of awehyde increases at the expense of 0co> thus, the ketone consumption yield is independent of pressure. This seems to be generally valid in the photolysis of the cyclic ketones it was confirmed, for instance, for cyclopentanone °, cyclohexanone 2-methyl cyclohexanone and 2,6-dimethyl cyclohexanone . An increase in wavelength also favours the formation of the aldehyde as compared to decarbonylation in the photolysis of cyclobutanone , cyclopentanone and cyclohexanone . At 3130 A, the decrease in temperature has a similar effect on the product distribution in the photolysis of cyclopentanone , cyclohexanone , 2-methyl cyclohexanone , and 2,6-dimethyl cyclohexanone to that caused by the increase in wavelength or pressure. However, at shorter wavelengths, the quantum yields seem to be independent of temperature . ... [Pg.370]

The reactions taking place in the vapour phase also occur in the condensed phase, and their mechanisms are probably similar. However, as may be expected on the basis of the results obtained for the gas phase photolysis, the formation of olefins, cycloparaffins, and CO is of less importance, while that of the saturated aldehydes is more important in the liquid phase or solution, where energy dissipation by collision is more efficient. The decarbonylation products were shown to be only of minor importance in the photolysis of liquid cyclopentanone and cyclohexanone . The unsaturated aldehyde was found to be the main product in the liquid-phase photolysis of cyclopentanone (methyl cyclohexanone . Unsaturated aldehydes were also identified in the photolysis products of other cyclic ketones in the liquid phase as well as in solution . ... [Pg.372]

Photolysis of pyridazine IV-oxide and alkylated pyridazine IV-oxides results in deoxygenation. When this is carried out in the presence of aromatic or methylated aromatic solvents or cyclohexane, the corresponding phenols, hydroxymethyl derivatives or cyclohexanol are formed in addition to pyridazines. In the presence of cyclohexene, cyclohexene oxide and cyclohexanone are generated. [Pg.12]

Alkyl- or aryl-dibenzothiophenes are conveniently prepared from the 2-arylthio-cyclohexanones, which are readily cyclized and dehydrogenated to yield the respective 1-, 2-, 3- or 4-substituted dibenzothiophenes (382 equation 9 Section 3.15.2.3.2). More complex polycyclic systems are available, using suitable aryenethiols, such as naph-thalenethiols, and 2-bromo-l-tetralone to synthesize the appropriate 2-arylthio ketones. Diaryl sulfides can be converted to dibenzothiophene derivatives in satisfactory yields by photolysis in the presence of iodine (equation 10) (75S532). Several alkyldibenzothiophenes with substituents in the 2- and/or 3-positions were prepared in satisfactory yield by the condensation of dichloromethyl methyl ether with substituted allylbenzo[6]thiophenes (equation 11) (74JCS(P1)1744). [Pg.916]

The asymmetric addition of ethyl azidoformate (N3C02Et) to an optically active enam-ine, prepared from cyclohexanone and (S )-2-pyrrolidinemethyl methyl ether, followed by photolysis produces 2-(ethoxycarbonylamino)cyclohexanone with modest enantiomeric excess (18 %ee) in 40% yield159. Use of (S -pyrrolidinemethyl trimethylsilyl ether as a chiral auxiliary increases the steric hindrance and provides the same product with the highest value of %ee (35%) in 51% yield. [Pg.460]

Using 2,2-dimethylcyclobutanone [26a], as a specific example, initial excitation to produce an excited state species followed by a-cleavage would produce the acyl alkyl biradical [30]. Subsequent decomposition of [30] would then afford ester [27a] (via ketene), cyclopropane [28a], and acetal [29a], the observed photoproducts. The intermediacy of biradical [30] was supported by (a) the nearly exclusive formation of methyl acetate (as opposed to methyl isobutyrate), (b) the exclusive formation of the 5,5-dimethyl substituted acetal [29a] (as opposed to its 3,3-dimethyl substituted isomer), (c) its role as a common intermediate for all products, and (d) analogy to the photochemistry of cyclopentanones and cyclohexanones. Recently, Wasacz and Joullie have reported that photolysis of oxacyclohexanone [32] affords a 3% yield of acetal [29a] (18). It is conceivable that the formation of [29a]... [Pg.213]

Calvert et al. (2008) suggest that the products of the photolysis of the methyl-substituted cyclohexanones offer some insight into the mechanism of cyclohexanone photodecomposition. The lack of stereospecificity in the products of cis- and frani-methyl-substituted cyclohexanones appears to favor biradical intermediates (Alumbaugh et al., 1965 Badcock et al., 1969). The possible unsaturated ketone products of the photolysis of methylcyclohexanone were of the structures (a), (b), and (c) ... [Pg.1162]


See other pages where 2- methyl cyclohexanone, photolysis is mentioned: [Pg.369]    [Pg.916]    [Pg.448]    [Pg.328]    [Pg.117]    [Pg.133]    [Pg.328]   
See also in sourсe #XX -- [ Pg.367 , Pg.369 , Pg.370 , Pg.372 ]




SEARCH



Cyclohexanone 2-methyl

Cyclohexanone methylation

Methyl photolysis

© 2024 chempedia.info