Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methanol behavior

Reciprocating Compressors. Prior to 1895, when Linde developed his air Hquefaction apparatus, none of the chemical processes used industrially required pressures much in excess of I MPa (145 psi) and the need for a continuous supply of air at 20 MPa provided the impetus for the development of reciprocating compressors. The introduction of ammonia, methanol, and urea processes in the early part of the twentieth century, and the need to take advantage of the economy of scale in ammonia plants, led to a threefold increase in the power required for compression from 1920 to 1940. The development of reciprocating compressors was not easy Htfle was known about the effects of cycles of fluctuating pressure on the behavior of the... [Pg.99]

In contrast to the behavior observed for (99), irradiation of a methanol solution of l-(2,4,6-trinitrophenyl)-2,3-diphenylaziridine (101) affords 1-hydroxy-4,6-dinitrobenz-imidazole (102) and benzaldehyde (68TL4801). [Pg.61]

Fire Hazards - Flash Point (deg. F) 182 CC (based on solution of 37 % fonnaldehyde and Methanol free), 122 CC (based on solution with 15 % Methanol) Flammable Limits in Air (%) 7.0 - 73 Fire Extinguishing Ageras Water, diy chemical, carbon dioxide, or alcohol foam Fire Extinguishing Agents Not To Be Used No data or recommendations found Special Hazards of Combustion Products Toxic vapors form Behavior in Fire Not pertinent Ignition Temperature (deg. F) 806 Electrical Hazard Not pertinent Burning Rate Not pertinent. [Pg.185]

Adesina [14] considered the four main types of reactions for variable density conditions. It was shown that if the sums of the orders of the reactants and products are the same, then the OTP path is independent of the density parameter, implying that the ideal reactor size would be the same as no change in density. The optimal rate behavior with respect to T and the optimal temperature progression (T p ) have important roles in the design and operation of reactors performing reversible, exothermic reactions. Examples include the oxidation of SO2 to SO3 and the synthesis of NH3 and methanol CH3OH. [Pg.543]

Het = heteroaryl residue] follow second-order kinetics, first order with respect to each reactant. Regular kinetics of this kind are also observed in the reaction of sodium arylsulfide in methanol provided that no free thiol is present (see Section II,D, l,c). As to other heterocyclic systems, A -oxides and bromofuran derivatives show similar kinetic behavior. [Pg.291]

The reactivities of 4- and 2-halo-l-nitronaphthalenes can usefully be compared with the behavior of azine analogs to aid in delineating any specific effects of the naphthalene 7r-electron system on nucleophilic substitution. With hydroxide ion (75°) as nucleophile (Table XII, lines 1 and 8), the 4-chloro compound reacts four times as fast as the 2-isomer, which has the higher and, with ethoxide ion (65°) (Table XII, lines 2 and 11), it reacts about 10 times as fast. With piperidine (Table XII, lines 5 and 17) the reactivity relation at 80° is reversed, the 2-bromo derivative reacts about 10 times as rapidly as the 4-isomer, presumably due to hydrogen bonding or to electrostatic attraction in the transition state, as postulated for benzene derivatives. 4-Chloro-l-nitronaphthalene reacts 6 times as fast with methanolic methoxide (60°) as does 4-chloroquinoline due to a considerably higher entropy of activation and in spite of a higher Ea (by 2 kcal). ... [Pg.344]

Depending on the electronic state of azafulvalene and the reaction conditions, simple nucleophiles such as amines or alcohols show a different behavior. Upon heating methanol reacted with azafulvalenes as electron-rich olefins by addition to the central double bond (64BSF2857 67LA155). Using the TAF 77 (Ar = Ph), the addition reaction in a neutral benzene-ethanol solution required several days to obtain a minor amount of 147, while the reaction proceeded rapidly in the presence of a catalytic amount of potassium hydroxide (79JOC1241). Tlie yellow-colored adduct 147 can be reconverted to the quinoid starting material by irradiation (Scheme 58). [Pg.169]

Recently, the photochemical behavior of 4-phenylisothiazole has been reanalyzed (98JOC5592). This compound, on irradiation in ether, gave ring-opening products and 4-phenylthiazole (3% yield) (Scheme 40). The irradiation in methanol... [Pg.75]

Figure 7.2 A three-dimensional phase diagram for a Type I binary mixture (here, CO2 and methanol). The shaded volume is the two-phase liquid-vapor region. This is shown ti uncated at 25 °C for illustration purposes. The volume surrounding the two-phase region is the continuum of fluid behavior. Figure 7.2 A three-dimensional phase diagram for a Type I binary mixture (here, CO2 and methanol). The shaded volume is the two-phase liquid-vapor region. This is shown ti uncated at 25 °C for illustration purposes. The volume surrounding the two-phase region is the continuum of fluid behavior.
The conclusions are evidently relevant to the amount of entropy lost by ions in methanol solution—see Table 29. If, however, the expression (170) is used for an atomic ion, we know that it is applicable only for values of R that are large compared with the ionic radius—that is to say, it will give quantitative results only when applied to the solvent dipoles in the outer parts of the co-sphere. The extent to which it applies also to the dipoles in the inner parts of the co-sphere must depend on the degree to which the behavior of these molecules simulates that of the more distant molecules. This can be determined only by experiment. In Table 29 we have seen that for the ion pair (K+ + Br ) and for the ion pair (K+ + Cl-) in methanol the unitary part of ASa amounts to a loss of 26.8 e.u. and 30.5 e.u., respectively, in contrast to the values for the same ions in aqueous solution, where the loss of entropy in the outer parts of the co-sphere is more than counterbalanced by a gain in entropy that has been attributed to the disorder produced by the ionic field. [Pg.199]

A very similar behavior has been found by Goren et al.126) in their investigation of the polymer (Lys-Ala-Glu)n. The higher the water content in mixtures with methanol and the more the pH shifts up or down relative to the neutral state, the charge increases and the CD signals assume more the form of the characteristic -structure, thus losing the form of an a-helix. [Pg.174]

This procedure, in contrast to previous methods, comprises only one step and is readily adapted to large-scale preparative work. Furthermore dibromination is very slow in methanol and hence the crude reaction products contain only traces of dibromo ketones. This contrasts with the behavior in other solvents such as ether or carbon tetrachloride, where larger amounts of dibromo ketones are always present, even when one equivalent of bromine is used. Methanol is thus recommended as a brominating solvent even when no orientation problem is involved. It should be noted that a-bromomethyl ketals are formed along with x-bromoketones and must be hydrolyzed during the workup (Note 8).7... [Pg.26]

Methanol oxidation on Ag polycrystalline films interfaced with YSZ at 500°C has been in investigated by Hong et al.52 The kinetic data in open and closed circuit conditions showed significant enhancement in the rate of C02 production under cathodic polarization of the silver catalyst-electrode. Similarly to CH3OH oxidation on Pt,50 the reaction exhibits electrophilic behavior for negative potentials. However, no enhancement of HCHO production rate was observed (Figure 8.48). The rate enhancement ratio of C02 production was up to 2.1, while the faradaic efficiencies for the reaction products defined from... [Pg.401]

In contrast, the mono-layer of methanol is built up much more slowly and is not complete until the concentration of methanol in the aqueous mixture is about 35%w/v. The behavior of methanol on the reverse phase is reminiscent of the adsorption of chloroform on the strongly polar silica gel surface. The complementary nature of the silica gel surface and that of the reverse phase is clearly apparent. It is also clear that strongly dispersive solvents might form bi-layers on the reverse phase surface just as polar solutes form bi-layers on the highly polar surface of silica gel. In fact, to date there has been no experimental evidence furnished that would support the formation of bi-layers on the surface of reverse phases, although their formation is likely and such evidence may well be forthcoming in the future. [Pg.78]

The dynamic behavior of fuel cells is of importance to insure the stable operation of the fuel cells under various operating conditions. Among a few different fuel cell types, the direct methanol fuel cell (DMFC) has been known to have advantages especially for portable... [Pg.593]

TMs study has shown the dynamic behavior of a 5W DMFC stack when the current loads have changed by pulses and steps. In order to determine the optimum operating conditions of the stack, the dynamic behavior of the stack current has been studied under a constant voltage output of 3.8V, varying the flow rate of 2M methanol solution and air. For the stable operation of the 5W stack, the minimal fuel flow rates are found to be 3 ml/min and 2L/min for 2M methanol and air, respectively. [Pg.596]


See other pages where Methanol behavior is mentioned: [Pg.214]    [Pg.214]    [Pg.202]    [Pg.401]    [Pg.274]    [Pg.222]    [Pg.36]    [Pg.61]    [Pg.316]    [Pg.172]    [Pg.142]    [Pg.102]    [Pg.74]    [Pg.158]    [Pg.291]    [Pg.184]    [Pg.258]    [Pg.196]    [Pg.213]    [Pg.602]    [Pg.64]    [Pg.245]    [Pg.877]    [Pg.70]    [Pg.14]    [Pg.34]    [Pg.136]    [Pg.364]    [Pg.351]    [Pg.391]    [Pg.152]    [Pg.146]    [Pg.211]    [Pg.24]   
See also in sourсe #XX -- [ Pg.380 ]




SEARCH



Acetonitrile behavior, 380 versus methanol

Behavior of 2 in methanol

Methanol phase behavior

© 2024 chempedia.info