Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metathesis of olefins, on metal oxides

Chapter 16 Metathesis of Olefins on Metal Oxides J.L.G. Fierro and J.C. Mol... [Pg.806]

Olefin metathesis is the transition-metal-catalyzed inter- or intramolecular exchange of alkylidene units of alkenes. The metathesis of propene is the most simple example in the presence of a suitable catalyst, an equilibrium mixture of ethene, 2-butene, and unreacted propene is obtained (Eq. 1). This example illustrates one of the most important features of olefin metathesis its reversibility. The metathesis of propene was the first technical process exploiting the olefin metathesis reaction. It is known as the Phillips triolefin process and was run from 1966 till 1972 for the production of 2-butene (feedstock propene) and from 1985 for the production of propene (feedstock ethene and 2-butene, which is nowadays obtained by dimerization of ethene). Typical catalysts are oxides of tungsten, molybdenum or rhenium supported on silica or alumina [ 1 ]. [Pg.224]

In this chapter, theoretical studies on various transition metal catalyzed boration reactions have been summarized. The hydroboration of olefins catalyzed by the Wilkinson catalyst was studied most. The oxidative addition of borane to the Rh metal center is commonly believed to be the first step followed by the coordination of olefin. The extensive calculations on the experimentally proposed associative and dissociative reaction pathways do not yield a definitive conclusion on which pathway is preferred. Clearly, the reaction mechanism is a complicated one. It is believed that the properties of the substrate and the nature of ligands in the catalyst together with temperature and solvent affect the reaction pathways significantly. Early transition metal catalyzed hydroboration is believed to involve a G-bond metathesis process because of the difficulty in having an oxidative addition reaction due to less available metal d electrons. [Pg.210]

Since tin-containing co-catalysts are essential for the metathesis of functionalized olefins [26], it was soon discovered that 1 supported on acidic metal oxides forms metathesis catalysts that are active without additives even for functionalized olefins [26]. Standard supports are Al203-Si02, or Nb205 and the activity is related to the surface acidity [2, 3, 26]. A high metathesis activity is observed when MTO is chemisorbed on the surface. No evidence for a surface carbene species was obtained, but there appears to be a correlation between the catalytic activity and the presence of an alkyl fragment on the surface [26a-c]. [Pg.1315]

Parallel to the development of catalysts for olefin metathesis, the first alkyne metathesis catalysts were W and Mo metal oxides or carbonyls suspended on alumina or silica.65 The first homogeneous catalysts were developed by Mortreux and consisted of a mixture of Mo(CO)6 and substituted phenols.66 It was not until the work of Schrock and his collaborators, however, that a well-defined, isolable alkylidyne catalyst (38) was synthesized, characterized, and shown to catalyze alkyne metathesis.67 Later modifications on 38 included substituting the alkoxy groups with fluorinated analogs, and for the corresponding Mo alkylidynes (39), the fluorinated alkoxy groups are essential for catalytic activity.68... [Pg.487]

Some metal oxide catalysts are activated by thermal reduction with hydrogen or carbon monoxide. For example, the catalytic activity of molybdenum oxide and tungsten oxide for the metathesis reaction of olefins is very much enhanced by their slight reduction (1). The catalytic activity for butene isomerization and ethene oligomerization appears on niobium oxide by its... [Pg.303]

Reaction of a reduced Philipps catalyst with Fischer-type molybdenum or tungsten carbene or carbyne complexes led to very active bimetallic, heterogeneous olefin metathesis catalysts. Surface metal ions might be involved in bonding interactions with the organometallic complex, possibly leading to heterometallic species on inorganic oxides. ... [Pg.624]

In this review we summarized the results of the latest ab initio studies of the elementary reaction such as oxidative addition, metathesis, and olefin insertion into metal-ligand bonds, as well as the multistep full catalytic cycles such as metal-catalyzed hydroboration, hydroformylation, and sila-staimation. In general, it has been demonstrated that quantum chemical calculations can provide very useful information concerning the reaction mechanism that is difficult to obtain from, and often complementary to, experiments. Such information includes the structures and energies of unstable intermediates and transition states, as well as prediction of effects of changing ligands and metals on the reaction rate and mechanism. [Pg.123]


See other pages where Metathesis of olefins, on metal oxides is mentioned: [Pg.517]    [Pg.519]    [Pg.521]    [Pg.523]    [Pg.525]    [Pg.527]    [Pg.529]    [Pg.531]    [Pg.533]    [Pg.535]    [Pg.537]    [Pg.539]    [Pg.541]    [Pg.517]    [Pg.519]    [Pg.521]    [Pg.523]    [Pg.525]    [Pg.527]    [Pg.529]    [Pg.531]    [Pg.533]    [Pg.535]    [Pg.537]    [Pg.539]    [Pg.541]    [Pg.177]    [Pg.233]    [Pg.255]    [Pg.564]    [Pg.385]    [Pg.452]    [Pg.61]    [Pg.520]    [Pg.69]    [Pg.37]    [Pg.72]    [Pg.162]    [Pg.138]    [Pg.420]    [Pg.14]    [Pg.629]    [Pg.238]    [Pg.151]    [Pg.341]    [Pg.273]    [Pg.1283]    [Pg.241]    [Pg.111]    [Pg.207]    [Pg.555]    [Pg.62]    [Pg.244]   
See also in sourсe #XX -- [ Pg.517 , Pg.518 , Pg.519 , Pg.520 , Pg.521 , Pg.522 , Pg.523 , Pg.524 , Pg.525 , Pg.526 , Pg.527 , Pg.528 , Pg.529 , Pg.530 , Pg.531 , Pg.532 , Pg.533 , Pg.534 ]




SEARCH



Metal Oxides olefin metathesis

Metal metathesis

Olefin metathesis

Olefin oxide

Olefinations oxidative

Olefine metathesis

Olefines, oxidation

Olefins, oxidation

Oxidation on metal oxides

Oxidative olefin

Oxidative olefination

Oxide on metals

© 2024 chempedia.info