Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal particles solutions

Sonoelectrochemistry has been employed in a number of fields such as in electroplating for the achievement of deposits and films of higher density and superior quality, in the deposition of conducting polymers, in the generation of highly active metal particles and in electroanalysis. Furtlienuore, the sonolysis of water to produce hydroxyl radicals can be exploited to initiate radical reactions in aqueous solutions coupled to electrode reactions. [Pg.1943]

The finer soil fraction contains adsorbed organics, small metallic particles, and bound ionic metals. This fraction may be treated further to remove the contaminants, or it may be incinerated or landfilled. The "clean" coarse fraction may contain some residual metallic fragments. With metal contamination, both the fine and coarse soil fractions may be leached with an acid solution to remove the metals. [Pg.173]

There are only a few weU-documented examples of catalysis by metal clusters, and not many are to be expected as most metal clusters are fragile and fragment to give metal complexes or aggregate to give metal under reaction conditions (39). However, the metal carbonyl clusters are conceptually important because they form a bridge between catalysts commonly used in solution, ie, transition-metal complexes with single metal atoms, and catalysts commonly used on surfaces, ie, small metal particles or clusters. [Pg.169]

The strong influence of morphology and mixing is well illustrated with the composite particle investigation. These particles were composed of a nickel shell coated on spherical aluminum particles by hydrogen reduction in aqueous metal salt solution. The overall ratio of material in a particle was about 80 wt% Ni and 20 wt% aluminum. With these particles, the ratio of reactants was approximately the same as in the mixed powders, but the morphology of the reactants is radically different. [Pg.186]

Barium and strontium salts of polystyrene with two active end-groups per chain were prepared by Francois et al.82). Direct electron transfer from tiny metal particles deposited on a filter through which a THF solution of the monomer was percolated yields the required polymers 82). The A.max of the resulting solution depends on the DPn of the formed oligomers, being identical with that of the salt of polymers with one active end-group per chain for DPn > 10, but is red-shifted at lower DPn. Moreover, for low DPn, (<5), the absorption peak splits due to chromophor-chromophor interaction caused by the vicinity of the reactive benzyl type anions. [Pg.117]

The clay mineral bentonite (sodium montmorillonite) has an excellent ion exchange and adsorption capacity. Films can be applied to electrode surfaces from colloidal clay solutions by simple dip or spin coating that become electroactive after incorporation of electroactive cations or metal particles 136-143)... [Pg.59]

As discussed earlier the whole process is a redox reaction. Selenium is reduced using sodium borohydride to give selenide ions. In the above reaction, the metal ion reacts with the polymer (PVP or PVA) solution to form the polymer-metal ion solution. Addition of the selenide ion solution to the polymer-metal ion solutions resulted in instantaneous change in the colour of the solutions from colourless to orange (PVA) and orange red (PVP). This indicates the formation of CdSe nanoparticles. The addition of the selenide solution to the polymer - metal ion solution resulted in gradual release of selenide ion (Se -) upon hydrolytic decomposition in alkaline media (equation 4). The released selenide ions then react with metal ion to form seed particles (nucleation). [Pg.174]

The most intensive development of the nanoparticle area concerns the synthesis of metal particles for applications in physics or in micro/nano-electronics generally. Besides the use of physical techniques such as atom evaporation, synthetic techniques based on salt reduction or compound precipitation (oxides, sulfides, selenides, etc.) have been developed, and associated, in general, to a kinetic control of the reaction using high temperatures, slow addition of reactants, or use of micelles as nanoreactors [15-20]. Organometallic compounds have also previously been used as material precursors in high temperature decomposition processes, for example in chemical vapor deposition [21]. Metal carbonyls have been widely used as precursors of metals either in the gas phase (OMCVD for the deposition of films or nanoparticles) or in solution for the synthesis after thermal treatment [22], UV irradiation or sonolysis [23,24] of fine powders or metal nanoparticles. [Pg.234]

Thiols are known to be excellent hgands for the stabilization of gold and platinum nanoparticles. In this respect, we did not observe any Iluxional behavior [31,52] in solution NMR experiments for thiols coordinated to the surface of noble metal particles (Fig. 8). However, in the case of rutheniiun, we foimd the slow catalytic formation of alkyl disulfides [31]. After exclud-... [Pg.246]

At short interparticle distances, the van der Walls forces show that two metallic particles will be mutually attracted. In the absence of repulsive forces opposed to the van der Walls forces the colloidal metal particles will aggregate. Consequently, the use of a protective agent able to induce a repulsive force opposed to the van der Walls forces is necessary to provide stable nanoparticles in solution. The general stabihzation mechanisms of colloidal materials have been described in Derjaguin-Landau-Verway-Overbeck (DLVO) theory. [40,41] Stabilization of colloids is usually discussed... [Pg.263]

Consider in more detail the phenomena occurring at the interface between the solution and a small metallic particle involved in electrophoresis. Upon contact with the electrolyte solution, the metal acquires a certain value of electrode potential E,... [Pg.597]

The reduction of transition metal salts in solution is the most widely practiced method for synthesis of metal colloidal suspensions [7]. In the preparation process, polymer is often used in order to prevent the agglomeration of metal particles as well as to control their size. Ahmadi et al. [5] reported that the concentration of the capping polymer affects the shape of platinum particles obtained by salt reduction. This means that the addition of a... [Pg.301]

The seeding-growth procedure is a popular technique that has been used for a century to synthesize metal particles in solution. Recent studies have successfully led to control the dimensionality of the particles where the sizes can be manipulated by varying the ratio of seed to metal salt [23-25]. The step-by-step particle enlargement is more effective than a one-step seeding method to avoid secondary nucleation [26,27]. This mechanism involves a two-step process, i.e. nucleation and then successive growth of the particles as illustrated in Scheme 1. [Pg.419]


See other pages where Metal particles solutions is mentioned: [Pg.160]    [Pg.160]    [Pg.102]    [Pg.277]    [Pg.36]    [Pg.211]    [Pg.129]    [Pg.359]    [Pg.756]    [Pg.338]    [Pg.525]    [Pg.80]    [Pg.396]    [Pg.169]    [Pg.177]    [Pg.70]    [Pg.76]    [Pg.506]    [Pg.165]    [Pg.191]    [Pg.163]    [Pg.239]    [Pg.7]    [Pg.22]    [Pg.35]    [Pg.184]    [Pg.185]    [Pg.243]    [Pg.327]    [Pg.327]    [Pg.328]    [Pg.332]    [Pg.336]    [Pg.337]    [Pg.339]    [Pg.355]    [Pg.356]    [Pg.391]    [Pg.393]   
See also in sourсe #XX -- [ Pg.431 , Pg.432 , Pg.433 , Pg.434 ]




SEARCH



Metal solutions

Metallic particles

Particle solution

Solute particles

Solutions metallic

© 2024 chempedia.info