Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal, metals molybdenum

Chrome—nickel alloy heating elements that commonly ate used in low temperature furnaces are not suitable above the very low end of the range. Elements commonly used as resistors are either silicon carbide, carbon, or high temperature metals, eg, molybdenum and tungsten. The latter impose stringent limitations on the atmosphere that must be maintained around the heating elements to prevent rapid element failure (3), or the furnace should be designed to allow easy, periodic replacement. [Pg.137]

Fused Salt Electrolysis. Only light RE metals (La to Nd) can be produced by molten salt electrolysis because these have a relatively low melting point compared to those of medium and heavy RE metals. Deposition of an alloy with another metal, Zn for example, is an alternative. The feed is a mixture of anhydrous RE chlorides and fluorides. The materials from which the electrolysis cell is constmcted are of great importance because of the high reactivity of the rare-earth metals. Molybdenum, tungsten, tantalum, or alternatively iron with ceramic or graphite linings are used as cmcible materials. Carbon is frequently used as an anode material. [Pg.546]

Some metals used as metallic coatings are considered nontoxic, such as aluminum, magnesium, iron, tin, indium, molybdenum, tungsten, titanium, tantalum, niobium, bismuth, and the precious metals such as gold, platinum, rhodium, and palladium. However, some of the most important poUutants are metallic contaminants of these metals. Metals that can be bioconcentrated to harmful levels, especially in predators at the top of the food chain, such as mercury, cadmium, and lead are especially problematic. Other metals such as silver, copper, nickel, zinc, and chromium in the hexavalent oxidation state are highly toxic to aquatic Hfe (37,57—60). [Pg.138]

Reduction to Solid Metal. Metals having very high melting points caimot be reduced in the Hquid state. Because the separation of a soHd metallic product from a residue is usually difficult, the raw material must be purified before reduction. Tungsten and molybdenum, for instance, are prepared by reduction of a purified oxide (WO, MoO ) or a salt, eg, (NH2 2 G4, using hydrogen. A reaction such as... [Pg.168]

Molybdenum Metal, Climax Molybdenum Co., Ann Arbor, Mich., 1960. [Pg.468]

Metal—Metal Bonding. The degree of nuclearity exhibited as a function of the oxidation state of molybdenum is shown in Table 1. In the highest oxidation state, Mo(VI), the tendency is to form mononuclear or a wide variety of polynuclear complexes in which there are no... [Pg.474]

Table 1. Metal—Metal Bonding in Molybdenum Complexes and Clusters... Table 1. Metal—Metal Bonding in Molybdenum Complexes and Clusters...
The tert-huty hydroperoxide is then mixed with a catalyst solution to react with propylene. Some TBHP decomposes to TBA during this process step. The catalyst is typically an organometaHic that is soluble in the reaction mixture. The metal can be tungsten, vanadium, or molybdenum. Molybdenum complexes with naphthenates or carboxylates provide the best combination of selectivity and reactivity. Catalyst concentrations of 200—500 ppm in a solution of 55% TBHP and 45% TBA are typically used when water content is less than 0.5 wt %. The homogeneous metal catalyst must be removed from solution for disposal or recycle (137,157). Although heterogeneous catalysts can be employed, elution of some of the metal, particularly molybdenum, from the support surface occurs (158). References 159 and 160 discuss possible mechanisms for the catalytic epoxidation of olefins by hydroperoxides. [Pg.138]

The neutral complexes of chromium, molybdenum, tungsten, and vanadium are six-coordinate and the CO molecules are arranged about the metal in an octahedral configuration as shown in stmcture (3). Vanadium carbonyl possesses an unpaired electron and would be expected to form a metal—metal bond. Steric hindrance may prevent dimerization. The other hexacarbonyls are diamagnetic. [Pg.63]

Acyclic diene molecules are capable of undergoing intramolecular and intermolec-ular reactions in the presence of certain transition metal catalysts molybdenum alkylidene and ruthenium carbene complexes, for example [50, 51]. The intramolecular reaction, called ring-closing olefin metathesis (RCM), affords cyclic compounds, while the intermolecular reaction, called acyclic diene metathesis (ADMET) polymerization, provides oligomers and polymers. Alteration of the dilution of the reaction mixture can to some extent control the intrinsic competition between RCM and ADMET. [Pg.328]

Corrosion Tests on Metallic Molybdenum, Engineering Experimental Station, Ohio State University, Project 142(1957-1959)... [Pg.851]

Harwood, J. J. (Ed.), The Metal Molybdenum (the protection of molybdenum against high temperature oxidation), American Society for Metals, Cleveland, Ohio (1958)... [Pg.851]

NOTE Steel consists of ferrite and pearlite phases. Ferrite is a solid solution of carbon in iron, whereas pearlite is a mixture of ferrite and laminar cementite. Cementite is a carbide, such as ferric carbide (Fe3C), although part of the iron content may be replaced by other metals including molybdenum. [Pg.262]

Molybdenum (Clusters and Metal-Metal Bonds) (see also Table 6)... [Pg.6]

Metal-metal bonds and metal-carbon bonds in the chemistry of molybdenum and tungsten alkox-ides. M. H. Chisholm, Polyhedron, 1983, 2, 681-721 (90). [Pg.47]

The silicides of major industrial importance are the disilicides of the refractory metals molybdenum, tantalum, titanium, tungsten, vanadium, and zirconium.pl] These compounds are of great interest par-... [Pg.327]

Just as, in Group VB, niobium, so, in this Group, molybdenum provides most of the examples of the chalcogenide halides. The occurrence and preparation of such compounds are described in numerous publications. In most cases, they have been obtained as powders, with the composition based on chemical analyses only. The presence of defined, homogeneous phases is, therefore, in many cases doubtful. In addition, some published results are contradictory. A decision is possible where a complete structure analysis has been made. As will be shown later, the formation of metal-metal bonds (so-called clusters), as in the case of niobium, is the most characteristic building-principle. Such clusters... [Pg.370]

Metal-Metal Bonds in Molybdenum Chalcogenide Halides... [Pg.373]

The molybdenum and tunsten diphenylacetylene compounds have been chemically useful primarily as precursors to the quadruple metal-metal bonded dimers [M(Por)]2, formed by solid-state vacuum pyrolysis reactions. However. Mo(TTP)()/"-PhC CPh) is also a useful substrate in atom-transfer reactions, reacting with Sx or Cp2TiS i to form Mo(TTP)=S. The reaction can be reversed by treatment of Mo(TTP)=S with PPh (which removes sulfur as PhxP=S) and PhC CPh. The order of preference for ligand binding to molybdenum 11) has been established to be PPh < PhC CPh < 4-picoline. ... [Pg.243]

We tend to think of metals as lustrous solids copper, tin, gold, silver, iron. We are less likely to think of individual metal atoms in biological machines. Nevertheless, plants and animals require the presence of tiny amounts of transition metals. Humans require most of the elements in the first transition metal series and at least one element from the second transition metal series, molybdenum. [Pg.1428]

It is likely that these metals displace molybdenum from surface sites on the alumina, so that they interfere with the strong interaction of the molybdenum and aluminum which keeps the molybdenum well dispersed. [Pg.9]

These chemical reactions possibly precede the electrochemical reactions. Thus the electrochemical reactions in the case of molybdenum oxides may be taken to be similar to those which occur in electrorefining, i.e., electrochemical dissolution of molybdenum from the impure metallic molybdenum anode and subsequent deposition at the cathode. The combination of the chemical and the electrochemical reactions occurring at the anode can be represented in the following way ... [Pg.722]

Many carbonyl and carbonyl metallate complexes of the second and third row, in low oxidation states, are basic in nature and, for this reason, adequate intermediates for the formation of metal— metal bonds of a donor-acceptor nature. Furthermore, the structural similarity and isolobal relationship between the proton and group 11 cations has lead to the synthesis of a high number of cluster complexes with silver—metal bonds.1534"1535 Thus, silver(I) binds to ruthenium,15 1556 osmium,1557-1560 rhodium,1561,1562 iron,1563-1572 cobalt,1573 chromium, molybdenum, or tungsten,1574-1576 rhe-nium, niobium or tantalum, or nickel. Some examples are shown in Figure 17. [Pg.988]


See other pages where Metal, metals molybdenum is mentioned: [Pg.265]    [Pg.2205]    [Pg.669]    [Pg.125]    [Pg.462]    [Pg.471]    [Pg.474]    [Pg.474]    [Pg.475]    [Pg.475]    [Pg.7]    [Pg.266]    [Pg.39]    [Pg.980]    [Pg.1016]    [Pg.1025]    [Pg.846]    [Pg.72]    [Pg.93]    [Pg.167]    [Pg.167]    [Pg.373]    [Pg.386]    [Pg.169]    [Pg.126]    [Pg.525]    [Pg.741]    [Pg.199]   
See also in sourсe #XX -- [ Pg.197 ]




SEARCH



Molybdenum metal

© 2024 chempedia.info