Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal carbenes with carboxylic esters

Carboxylic esters undergo the conversion C=0— C=CHR (R = primary or secondary alkyl) when treated with RCHBr2, Zn, and TiCl4 in the presence of A,A,A, iV -tetramethylethylenediamine. Metal carbene complexes R2C=ML (L = ligand), where M is a transition metal such as Zr, W, or Ta, have also been used to convert the C=0 of carboxylic esters and lactones to CR2. It is likely that the complex Cp2Ti=CH2 is an intermediate in the reaction with Tebbe s reagent. [Pg.1238]

Dirhodium(II) tetrakis(carboxamides), constructed with chiral 2-pyrroli-done-5-carboxylate esters so that the two nitrogen donor atoms on each rhodium are in a cis arrangement, represent a new class of chiral catalysts with broad applicability to enantioselective metal carbene transformations. Enantiomeric excesses greater than 90% have been achieved in intramolecular cyclopropanation reactions of allyl diazoacetates. In intermolecular cyclopropanation reactions with monosubsti-tuted olefins, the cis-disubstituted cyclopropane is formed with a higher enantiomeric excess than the trans isomer, and for cyclopropenation of 1-alkynes extraordinary selectivity has been achieved. Carbon-hydro-gen insertion reactions of diazoacetate esters that result in substituted y-butyrolactones occur in high yield and with enantiomeric excess as high as 90% with the use of these catalysts. Their design affords stabilization of the intermediate metal carbene and orientation of the carbene substituents for selectivity enhancement. [Pg.45]

The most prominent systems studied thus far are the Fischer carbene complexes of the Group 6 metals, i.e., Cr, Mo and W, e.g., 4. One important process that will be discussed at some length in this chapter is nucleophilic substitution, e.g., the replacement of the MeO group by a group with a different heteroatom such as an amino or thioalkyl group. This reaction proceeds via a tetrahedral intermediate (equation 1) and is similar to nucleophilic substitutions on carboxylic esters. [Pg.141]

Fig. 3.18. Mechanistic details on the transition-metal catalyzed (here Cu-catalyzed) cyclopropanation of styrene as a prototypical electron-rich alkene. The more bulky the substituent R of the ester group C02R, the stronger is the preference of transition state A over D and hence the larger the portion of the trans-cyclo-propane carboxylic acid ester in the product mixture.—The zwitterionic resonance form B turns out to be a better presentation of the electrophilic character of copper-carbene complexes than the (formally) charge-free resonance form C or the zwitterionic resonance form (not shown here) with the opposite charge distribution ( a to the C02R substituent, on Cu) copper-carbene complexes preferentially react with electron-rich alkenes. Fig. 3.18. Mechanistic details on the transition-metal catalyzed (here Cu-catalyzed) cyclopropanation of styrene as a prototypical electron-rich alkene. The more bulky the substituent R of the ester group C02R, the stronger is the preference of transition state A over D and hence the larger the portion of the trans-cyclo-propane carboxylic acid ester in the product mixture.—The zwitterionic resonance form B turns out to be a better presentation of the electrophilic character of copper-carbene complexes than the (formally) charge-free resonance form C or the zwitterionic resonance form (not shown here) with the opposite charge distribution ( a to the C02R substituent, on Cu) copper-carbene complexes preferentially react with electron-rich alkenes.

See other pages where Metal carbenes with carboxylic esters is mentioned: [Pg.1562]    [Pg.117]    [Pg.192]    [Pg.1080]    [Pg.510]    [Pg.300]    [Pg.91]    [Pg.237]    [Pg.304]   
See also in sourсe #XX -- [ Pg.1381 ]




SEARCH



Carboxylic metalation

Esters metalation

Metal carbenes

Metal carboxylates

Metalation carboxylic esters

With Carbenes

With carboxylic esters

© 2024 chempedia.info