Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metabolism citric acid cycle

See also Table 5.1, Genetic Code, Asparagine, Citrulline, Urea Cycle, Transamination in Amino Acid Metabolism, Citric Acid Cycle Intermediates in Amino Acid Metabolism, Essential Amino Acids... [Pg.262]

Mucopolysaccharide metabolism Citric acid cycle Chondroitin sulphotransferase IsQcitrate dehydrogenase Succinate dehydrogenase Malate dehydrogenase Malate NADP dehydrogenase Aspartate aminotransferase Glutamate dehydrogenase Pyruvate carboxylase Phosphoenolpyruvate carboxykinase... [Pg.17]

Physiological Role of Citric Acid. Citric acid occurs ia the terminal oxidative metabolic system of virtually all organisms. This oxidative metabohc system (Fig. 2), variously called the Krebs cycle (for its discoverer, H. A. Krebs), the tricarboxyUc acid cycle, or the citric acid cycle, is a metaboHc cycle involving the conversion of carbohydrates, fats, or proteins to carbon dioxide and water. This cycle releases energy necessary for an organism s growth, movement, luminescence, chemosynthesis, and reproduction. The cycle also provides the carbon-containing materials from which cells synthesize amino acids and fats. Many yeasts, molds, and bacteria conduct the citric acid cycle, and can be selected for thek abiUty to maximize citric acid production in the process. This is the basis for the efficient commercial fermentation processes used today to produce citric acid. [Pg.182]

FIGURE 18.2 The metabolic map as a set of dots and lines. The heavy dots and lines trace the central energy-releasing pathways known as glycolysis and the citric acid cycle. [Pg.568]

The combustion of the acetyl groups of acetyl-CoA by the citric acid cycle and oxidative phosphorylation to produce COg and HgO represents stage 3 of catabolism. The end products of the citric acid cycle, COg and HgO, are the ultimate waste products of aerobic catabolism. As we shall see in Chapter 20, the oxidation of acetyl-CoA during stage 3 metabolism generates most of the energy produced by the cell. [Pg.574]

Certain of the central pathways of intermediary metabolism, such as the citric acid cycle, and many metabolites of other pathways have dual purposes—they serve in both catabolism and anabolism. This dual nature is reflected in the designation of such pathways as amphibolic rather than solely catabolic or anabolic. In any event, in contrast to catabolism—which converges to the common intermediate, acetyl-CoA—the pathways of anabolism diverge from a small group of simple metabolic intermediates to yield a spectacular variety of cellular constituents. [Pg.574]

The following model is a representation of citric acid, the key substance in the so-called citric acid cycle by which food molecules are metabolized in the body. Only the connections between atoms are shown multiple bonds are not indicated. Complete the structure by indicating the positions of multiple bonds and lone-pair electrons (gray = C, red = O, ivory = H). [Pg.28]

Vlaleic acid has a dipole moment, but the closely related fumaric acid, a substance involved in the citric acid cycle by which food molecules are metabolized, does not. Explain. [Pg.70]

Problem 5.9 Predict the products of the following polar reaction, a step in the citric acid cycle for food metabolism, by interpreting the flow of elections indicated by Uie curved arrows ... [Pg.152]

Acid-catalyzed hydration of isolated double bonds is also uncommon in biological pathways. More frequently, biological hydrations require that the double bond be adjacent to a carbonyl group for reaction to proceed. Fumarate, for instance, is hydrated to give malate as one step in the citric acid cycle of food metabolism. Note that the requirement for an adjacent carbonyl group in the addition of water is the same as that we saw in Section 7.1 for the elimination of water. We ll see the reason for the requirement in Section 19.13, but might note for now that the reaction is not an electrophilic addition but instead occurs... [Pg.221]

In contrast to laboratory reactions, enzyme-catalyzed reactions often give a single enantiomer of a chiral product, even when the substrate is achiral. One step in the citric acid cycle of food metabolism, for instance, is the aconitase-catalyzed addition of water to (Z)-aconitate (usually called ris-aconitate) to give isocitrate. [Pg.312]

A large number of biological reactions involve prochiral compounds. One of the steps in the citric acid cycle by which food is metabolized, for instance, is... [Pg.316]

Water can add reversibly to o ,/3-unsalurated aldehydes and ketones to yield /3-hydroxy aldehydes and ketones, although the position of the equilibrium generally favors unsaturated reactant rather than saturated adduct. A related addition to an c /S-unsaturated carboxylic acid occurs in numerous biological pathways, such as the citric acid cycle of food metabolism where ds-aconitate is converted into isocitrate by conjugate addition of water to a double bond. [Pg.727]

Isocitric acid, an intermediate in the citric acid cycle of food metabolism, has the systematic name (2/ ,3S)-3-carboxy-2-hydroxypentanedioic acid. Draw the structure. [Pg.778]

Enzymes work by bringing reactant molecules together, holding them, in the orientation necessary for reaction, and providing any necessary acidic or basic sites to catalyze specific steps. As an example, let s look at citrate synthase, an enzyme that catalyzes the aldol-like addition of acetyl CoA to oxaloacetate to give citrate. The reaction is the first step in the citric acid cycle, in which acetyl groups produced by degradation of food molecules are metabolized to yield C02 and H20. We ll look at the details of the citric acid cycle in Section 29.7. [Pg.1043]

The primary fate of acetyl CoA under normal metabolic conditions is degradation in the citric acid cycle to yield C02. When the body is stressed by prolonged starvation, however, acetyl CoA is converted into compounds called ketone bodies, which can be used by the brain as a temporary fuel. Fill in the missing information indicated by the four question marks in the following biochemical pathway for the synthesis of ketone bodies from acetyl CoA ... [Pg.1174]

Citric acid cycle (Section 29.7) The metabolic pathway by which acetyl CoA is degraded to CO2. [Pg.1238]

Ethanol is oxidized by alcohol dehydrogenase (in the presence of nicotinamide adenine dinucleotide [NAD]) or the microsomal ethanol oxidizing system (MEOS) (in the presence of reduced nicotinamide adenine dinucleotide phosphate [NADPH]). Acetaldehyde, the first product in ethanol oxidation, is metabolized to acetic acid by aldehyde dehydrogenase in the presence of NAD. Acetic acid is broken down through the citric acid cycle to carbon dioxide (CO2) and water (H2O). Impairment of the metabolism of acetaldehyde to acetic acid is the major mechanism of action of disulfiram for the treatment of alcoholism. [Pg.6]

Generally, NAD-linked dehydrogenases catalyze ox-idoreduction reactions in the oxidative pathways of metabolism, particularly in glycolysis, in the citric acid cycle, and in the respiratory chain of mitochondria. NADP-linked dehydrogenases are found characteristically in reductive syntheses, as in the extramitochon-drial pathway of fatty acid synthesis and steroid synthesis—and also in the pentose phosphate pathway. [Pg.87]

Glucose is metabolized to pyruvate by the pathway of glycolysis, which can occur anaerobically (in the absence of oxygen), when the end product is lactate. Aerobic tissues metabolize pyruvate to acetyl-CoA, which can enter the citric acid cycle for complete oxidation to CO2 and HjO, linked to the formation of ATP in the process of oxidative phosphorylation (Figure 16-2). Glucose is the major fuel of most tissues. [Pg.122]

The amino acids are required for protein synthesis. Some must be supplied in the diet (the essential amino acids) since they cannot be synthesized in the body. The remainder are nonessential amino acids that are supplied in the diet but can be formed from metabolic intermediates by transamination, using the amino nitrogen from other amino acids. After deamination, amino nitrogen is excreted as urea, and the carbon skeletons that remain after transamination (1) are oxidized to CO2 via the citric acid cycle, (2) form glucose (gluconeogenesis), or (3) form ketone bodies. [Pg.124]

Nearly all products of digestion of carbohydrate, fat, and protein are metabolized to a common metabolite, acetyl-CoA, before final oxidation to CO2 in the citric acid cycle. [Pg.129]

Pathways are compartmentalized within the cell. Glycolysis, glycogenesis, glycogenolysis, the pentose phosphate pathway, and fipogenesis occur in the cytosol. The mitochondrion contains the enzymes of the citric acid cycle, P-oxidation of fatty acids, and of oxidative phosphorylation. The endoplasmic reticulum also contains the enzymes for many other processes, including protein synthesis, glycerofipid formation, and dmg metabolism. [Pg.129]

The citric acid cycle is the final common pathway for the aerobic oxidation of carbohydrate, lipid, and protein because glucose, fatty acids, and most amino acids are metabolized to acetyl-CoA or intermediates of the cycle. It also has a central role in gluconeogenesis, lipogenesis, and interconversion of amino acids. Many of these processes occur in most tissues, but the hver is the only tissue in which all occur to a significant extent. The repercussions are therefore profound when, for example, large numbers of hepatic cells are damaged as in acute hepatitis or replaced by connective tissue (as in cirrhosis). Very few, if any, genetic abnormalities of citric acid cycle enzymes have been reported such ab-normahties would be incompatible with life or normal development. [Pg.130]

Four of the B vitamins are essential in the citric acid cycle and therefore in energy-yielding metabolism (1) riboflavin, in the form of flavin adenine dinucleotide (FAD), a cofactor in the a-ketoglutarate dehydrogenase complex and in succinate dehydrogenase (2) niacin, in the form of nicotinamide adenine dinucleotide (NAD),... [Pg.133]

THE CITRIC ACID CYCLE PLAYS A PIVOTAL ROLE IN METABOLISM... [Pg.133]

Theoretically, a fall in concentration of oxaloacetate, particularly within the mitochondria, could impair the ability of the citric acid cycle to metabolize acetyl-CoA and divert fatty acid oxidation toward ketogenesis. Such a fall may occur because of an increase in the [NADH]/[NAD+] ratio caused by increased P-oxida-tion affecting the equilibrium between oxaloacetate and malate and decreasing the concentration of oxaloacetate. However, pyruvate carboxylase, which catalyzes the conversion of pyruvate to oxaloacetate, is activated by acetyl-CoA. Consequently, when there are significant amounts of acetyl-CoA, there should be sufficient oxaloacetate to initiate the condensing reaction of the citric acid cycle. [Pg.187]


See other pages where Metabolism citric acid cycle is mentioned: [Pg.299]    [Pg.299]    [Pg.12]    [Pg.101]    [Pg.193]    [Pg.394]    [Pg.283]    [Pg.20]    [Pg.32]    [Pg.574]    [Pg.631]    [Pg.808]    [Pg.1170]    [Pg.50]    [Pg.194]    [Pg.194]    [Pg.122]    [Pg.136]    [Pg.136]    [Pg.157]    [Pg.157]    [Pg.160]    [Pg.212]    [Pg.236]   
See also in sourсe #XX -- [ Pg.545 , Pg.707 ]




SEARCH



Aerobic metabolism citric acid cycle

Citric acid cycle in metabolism

Citric acid cycle metabolic importance

Citric acid metabolism

Citric cycle

Energy metabolism citric acid cycle

Metabolic citric acid cycle

Metabolic citric acid cycle

© 2024 chempedia.info