Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mesoscale model fluid-solid

The mesoscale models for momentum transfer between phases differ quite substantially depending on the multiphase system under investigation, and different semi-empirical relationships have been developed for different systems. Since the nature of the disperse phase is particularly important, the available mesoscale models are generally divided into those valid for fluid-fluid and those valid for fluid-solid systems. The main difference is that in fluid-fluid systems the elements of the disperse phase are deformable particles (i.e. bubbles or droplets), whereas in fluid-solid systems the disperse phase is constituted by particles of constant shape. Typical fluid-fluid systems for which the mesoscale models reported below apply are gas-liquid, liquid-liquid, and liquid-gas systems. The mesoscale models reported for fluid-solid systems are valid both for gas-solid and for liquid-solid systems. As a general rule, the mesoscale model for Afp should be derived starting from a single-particle momentum balance ... [Pg.161]

Mesoscale simulations model a material as a collection of units, called beads. Each bead might represent a substructure, molecule, monomer, micelle, micro-crystalline domain, solid particle, or an arbitrary region of a fluid. Multiple beads might be connected, typically by a harmonic potential, in order to model a polymer. A simulation is then conducted in which there is an interaction potential between beads and sometimes dynamical equations of motion. This is very hard to do with extremely large molecular dynamics calculations because they would have to be very accurate to correctly reflect the small free energy differences between microstates. There are algorithms for determining an appropriate bead size from molecular dynamics and Monte Carlo simulations. [Pg.273]

Multiscale descriptions of particle-droplet interactions in spray processing of composite particles are realized based on Multiphase Computational Fluid Dynamics (M-CFD) models, in which processes such as liquid atomization and particle-droplet mixing spray (macro-scale), particle-droplet collision (mesoscale), and particle penetration into droplet (micro-scale) are taken into account as shown in Fig. 18.52. Thereby, the incorporation efficiency and sticking efficiency of solid particles in matrix particles are correlated with the operatiOTi conditions and material properties. [Pg.733]


See other pages where Mesoscale model fluid-solid is mentioned: [Pg.136]    [Pg.701]    [Pg.705]    [Pg.154]    [Pg.3]    [Pg.10]   
See also in sourсe #XX -- [ Pg.161 ]




SEARCH



Mesoscale

Mesoscale modeling

Mesoscale modelling

Mesoscale models

Modeling fluids

Modeling solid

Solid mesoscale

© 2024 chempedia.info