Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mesorhizobium loti

Fig. 2.90. Electropherograms of sterile root exudate before (a) and after incubation with Mesorhizobium loti (b) and Rhizobium leguminosarum bv. trifolii (c). From their UV spectra, peaks 1-6 were identified as resorcinol, rhamnetin, catechin, quercetin glycoside, quercetin aglycone and hesperidin. Differences in the retention times of the same compounds in different samples could be due to the variations in buffer temperature or sample composition. Reprinted with permission from H. L. Steele et al. [213]. Fig. 2.90. Electropherograms of sterile root exudate before (a) and after incubation with Mesorhizobium loti (b) and Rhizobium leguminosarum bv. trifolii (c). From their UV spectra, peaks 1-6 were identified as resorcinol, rhamnetin, catechin, quercetin glycoside, quercetin aglycone and hesperidin. Differences in the retention times of the same compounds in different samples could be due to the variations in buffer temperature or sample composition. Reprinted with permission from H. L. Steele et al. [213].
M. M. A. Olsthoorn, I. M. Lopez-Lara, B. O. Petersen, K. Bock, J. Haverkamp, H. P. Spaink, and J. E. Thomas-Oates, Novel branched nod factor structure results from a-(l->3) fucosyl transferase activity The major lipo-chitin oligosaccharides from Mesorhizobium loti strain NZP2213 bear an a-(l->3) fucosyl substituent on a nonterminal backbone residue, Biochemistry, 37 (1998) 9024-9032. [Pg.136]

Casabuono, A.C., D Antuono, A.L., Sato, Y., Nonami, H., Uglade, R., Lepek, V.C., Erra-Balsells, R., Couto, A.S. A matrix-assisted laser desorption/ionization mass spectrometry approach to the lipid A from Mesorhizobium loti. Rapid Comm Mass Spectrom 20 (2006) 2175-2182. [Pg.378]

Kaneko, T., Nakamura, Y., Sato, S., Asamizu, E., Kato, T., Sasamoto, S., Watanabe, A., Idesawa, K., Ishikawa, A., Kawashima, K., Kimura, T., Kishida, Y., Kiyokawa, C., Kohara, M., Matsumoto, M., Matsuno, A., Mochizuki, Y., Nakayama, S., Nakazaki, N., Shimpo, S., Sugimoto, M., Takeuchi, C., Yamada, M., Tabata, S. Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7 (2000a) 331-338. [Pg.380]

Townsend, G.E., II, Forsberg, L.S., Keating, D.H. Mesorhizobium loti produces nodPQ-dependent sulfated cell surface polysaccharides. J Bacteriol 188 (2006) 8560-8572. [Pg.385]

Turska-Szewczuk, A., Lotocka, B., Kutkowska, J., Krol, J., Urbanik-Sypniewska, T., Russa, R. The incomplete substitution of lipopolysaccharide with O-chain prevents the establishment of effective symbiosis between Mesorhizobium loti NZP2213.1 and Lotus comiculatus. Microbiol Res 164 (2009) 163-173. [Pg.385]

Turska-Szewczuk, A., Palusinska-Szysz, M., Russa, R. Structural studies of the O-polysaccharide chain from the lipopolysaccharide of symbiotically enhanced mutant Mlo-13 of Mesorhizobium loti NZP2213. Carbohydr Res 343 (2008) 477-482. [Pg.385]

Bradyhizobium japonicum NP 771447 —Acpobacterium tumefaciens NP 354614 - Mesorhizobium loti Q98ME7... [Pg.219]

Agrobacterium tumefaciens Brucella melitensis Burkholderia fungorum (2) Campylobacter jejuni Caulobacter crescentus Chlorobium tepidum Chloroflexus aurantiacus Deinococcus radiodurans Magnetospirillum magnetotacticum (2) Mesorhizobium loti (2) Methanosarcina acetivorans (2)b Methanosarcina mazei (2)b Mycobacterium tuberculosis Myxococcus xanthus Nostoc punctiforme (2)... [Pg.69]

Gagnon H, Ibrahim RK. Aldonic acids a novel family of nod gene inducers of Mesorhizobium loti, Rhizobium lupini, and Sinorhizobium meliloti. Mol. Plant-Microbe Interact. 1998 11 988-998. [Pg.1754]

Kaneko T. et al. (2000). Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res. 6 331-338. [Pg.413]

Figure 2 Phylogenetic neighbor-joining tree showing the phylogenetic relationship of arsenite oxidizing isolates BEN-5, NT-2, NT-3, NT-4, NT-25, and NT-26 with species belonging to the a-Proteobacteria. The sequence of Mesorhizobium loti was used as the outgroup. Significant bootstrap values from 100 analyses are shown at the branch points of the trees. Bar = 0.01% sequence difference. Figure 2 Phylogenetic neighbor-joining tree showing the phylogenetic relationship of arsenite oxidizing isolates BEN-5, NT-2, NT-3, NT-4, NT-25, and NT-26 with species belonging to the a-Proteobacteria. The sequence of Mesorhizobium loti was used as the outgroup. Significant bootstrap values from 100 analyses are shown at the branch points of the trees. Bar = 0.01% sequence difference.
The three enzymes involved in the vitamin Bg degradation pathway found in Mesorhizobium loti play key roles in the conversion of free forms of vitamin Bg in this method. [Pg.381]

Yokochi, N., Nishimura, S., Yoshikane, Y., Ohnishi, K., and Yagi, T., 2006. Identification of a new tetrameric pyridoxal 4-dehydrogenase as the second enzyme in the degradation pathway for pyridoxine in a nitrogen-fixing symbiotic bacterium, Mesorhizobium loti. Archives of Biochemistry and Biophysics. 452 1-8. [Pg.384]

A. S. A matrix-assisted laser desorption/ionization mass spectrometry approach to the hpid A from Mesorhizobium loti. Rapid Commun. Mass Spectrom. 2006, 20, 2175-2182. [Pg.768]


See other pages where Mesorhizobium loti is mentioned: [Pg.312]    [Pg.128]    [Pg.347]    [Pg.357]    [Pg.212]    [Pg.551]    [Pg.409]    [Pg.414]    [Pg.414]    [Pg.414]    [Pg.414]    [Pg.414]    [Pg.417]    [Pg.28]    [Pg.91]    [Pg.333]    [Pg.262]    [Pg.263]    [Pg.297]    [Pg.369]    [Pg.384]    [Pg.261]    [Pg.271]    [Pg.378]    [Pg.381]   
See also in sourсe #XX -- [ Pg.237 ]

See also in sourсe #XX -- [ Pg.69 ]




SEARCH



© 2024 chempedia.info