Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Memory function equation mode coupling theory

The relaxation equations for the time correlation functions are derived formally by using the projection operator technique [12]. This relaxation equation has the same structure as a generalized Langevin equation. The mode coupling theory provides microscopic, albeit approximate, expressions for the wavevector- and frequency-dependent memory functions. One important aspect of the mode coupling theory is the intimate relation between the static microscopic structure of the liquid and the transport properties. In fact, even now, realistic calculations using MCT is often not possible because of the nonavailability of the static pair correlation functions for complex inter-molecular potential. [Pg.71]

Note that the above study is performed for a simple system. There exists a large body of literature on the study of diffusion in complex quasi-two-dimensional systems—for example, a collodial suspension. In these systems the diffusion can have a finite value even at long time. Schofield, Marcus, and Rice [17] have recently carried out a mode coupling theory analysis of a quasi-two-dimensional colloids. In this work, equations for the dynamics of the memory functions were derived and solved self-consistently. An important aspect of this work is a detailed calculation of wavenumber- and frequency-dependent viscosity. It was found that the functional form of the dynamics of the suspension is determined principally by the binary collisions, although the mode coupling part has significant effect on the longtime diffusion. [Pg.203]

A microscopic theory, the so-called mode coupling theory (MCT) [7,72], has been developed recently, based on an equation for the density autocorrelation function which contains a nonlinear memory function and gives some detailed... [Pg.105]

In this chapter we have described a theory for dynamics of polyatomic fluids based on the memory-function formalism and on the interaction-site representation of molecular liquids. Approximation schemes for memory functions appearing in the generalized Langevin equation have been developed by assuming an exponential form for memory functions and by employing the mode-coupling approach. Numerical results were presented for longitudinal current spectra of a model diatomic liquid and water, and it has been discussed how the results can be interpreted in... [Pg.344]

The mode coupling approximation for m (0 yields a set of equations that needs to be solved self-consistently. Hereby the only input to the theory is the static equilibrium structure factor 5, that enters the memory kernel directly and via the direct correlation function that is given by the Ornstein-Zernicke expression = (1 - l/5,)/p, with p being the average density. In MCT, the dynamics of a fluid close to the glass transition is therefore completely determined by equilibrium quantities plus one time scale, here given by the short-time diffusion coefficient. The theory can thus make rather strong predictions as the only input, namely, the equilibrium structure factor, can often be calculated from the particle interactions, or even more directly can be taken from the simulations of the system whose dynamics is studied. [Pg.139]


See other pages where Memory function equation mode coupling theory is mentioned: [Pg.127]    [Pg.111]    [Pg.296]   


SEARCH



Coupled equations

Coupled mode equations

Coupled mode theory

Coupled modes

Coupling equations

Coupling theory

Couplings functions

Equations function

Functional equation

Functional mode

Memory function

Mode coupling

Mode coupling theories function

Mode equations

© 2024 chempedia.info