Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Membrane surface, molecular

You may be surprised, but fouling is not always detrimental. The term dynamic membrane describes deposits that benefit the separation process by reducing the membrane s effective MWCO Molecular Weight cut-off) so that a solute of interest is better retained. Concentration polarization refers to the reversible build-up of solutes near the membrane surface. Concentration polarization can lead to irreversible fouling by altering interactions between the solvent, solutes and membrane. [Pg.351]

Tangential crossflow filtration Process where the feed stream sweeps the membrane surface and the particulate debris is expelled, thus extending filter life. The filtrate flows through the membrane. Most commonly used in the separation of high-and-low-molecular weight matter such as in ultrapure reverse osmosis, ultrafiltration, and submicron microfiltration processes. [Pg.626]

N-Heterocycles as receptor models based on molecular recognition at membrane surfaces 97YGK436. [Pg.237]

A close relationship exists between physicochemical properties of pigment molecules and their ability to be absorbed and thus to exhibit biological functions. Carotenoids are hydrophobic molecules that require a lipophilic environment. In vivo, they are found in precise locations and orientations within biological membranes. For example, the dihydroxycarotenoids such as lutein and zeaxanthin orient themselves perpendicularly to the membrane surface as molecular rivets in order to expose their hydroxyl groups to a more polar environment. [Pg.148]

Flux Decline Plugging, Fouling, Polarization Membranes operated in NFF mode tend to show a steady flux decline while those operated in TFF mode tend to show a more stable flux after a short initial decline. Irreversible flux decline can occur by membrane compression or retentate channel spacers blinding off the membrane. Flux decline by fouling mechanisms (molecular adsorption, precipitation on the membrane surface, entrapment within the membrane structure) are amenable to chemical cleaning between batches. Flux decline amenable to mechanical disturbance (such as TFF operation) includes the formation of a secondary structure on the membrane surface such as a static cake or a fluid region of high component concentration called a polarization layer. [Pg.37]

Figure 5 also shows the effect of the ionophore concentration of the Langmuir type binding isotherm. The slope of the isotherm fora membrane with 10 mM of ionophore 1 was roughly three times larger than that with 30 mM of the same ionophore. The binding constant, K, which is inversely proportional to the slope [Eq. (3)], was estimated to be 4.2 and 11.5M for the membranes with 10 mM and 30 mM ionophore 1, respectively. This result supports the validity of the present Langmuir analysis because the binding constant, K, should reflect the availability of the surface sites, the number of which should be proportional to the ionophore concentration, if the ionophore is not surface active itself In addition, the intercept of the isotherm for a membrane with 10 mM of ionophore 1 was nearly equal to that of a membrane with 30 mM ionophore 1 (see Fig. 5). This suggests the formation of a closest-packed surface molecular layer of the SHG active Li -ionophore 1 cation complex, whose surface concentration is nearly equal at both ionophore concentrations. On the other hand, a totally different intercept and very small slope of the isotherm was obtained for a membrane containing only 3 mM of ionophore 1. This indicates an incomplete formation of the closest-packed surface layer of the cation complexes due to a lack of free ionophores at the membrane surface, leading to a kinetic limitation. In this case, the potentiometric response of the membrane toward Li+ was also found to be very weak vide infra). Figure 5 also shows the effect of the ionophore concentration of the Langmuir type binding isotherm. The slope of the isotherm fora membrane with 10 mM of ionophore 1 was roughly three times larger than that with 30 mM of the same ionophore. The binding constant, K, which is inversely proportional to the slope [Eq. (3)], was estimated to be 4.2 and 11.5M for the membranes with 10 mM and 30 mM ionophore 1, respectively. This result supports the validity of the present Langmuir analysis because the binding constant, K, should reflect the availability of the surface sites, the number of which should be proportional to the ionophore concentration, if the ionophore is not surface active itself In addition, the intercept of the isotherm for a membrane with 10 mM of ionophore 1 was nearly equal to that of a membrane with 30 mM ionophore 1 (see Fig. 5). This suggests the formation of a closest-packed surface molecular layer of the SHG active Li -ionophore 1 cation complex, whose surface concentration is nearly equal at both ionophore concentrations. On the other hand, a totally different intercept and very small slope of the isotherm was obtained for a membrane containing only 3 mM of ionophore 1. This indicates an incomplete formation of the closest-packed surface layer of the cation complexes due to a lack of free ionophores at the membrane surface, leading to a kinetic limitation. In this case, the potentiometric response of the membrane toward Li+ was also found to be very weak vide infra).
The determination of the number of the SHG active complex cations from the corresponding SHG intensity and thus the surface charge density, a°, is not possible because the values of the molecular second-order nonlinear electrical polarizability, a , and molecular orientation, T), of the SHG active complex cation and its distribution at the membrane surface are not known [see Eq. (3)]. Although the formation of an SHG active monolayer seems not to be the only possible explanation, we used the following method to estimate the surface charge density from the SHG results since the square root of the SHG intensity, is proportional to the number of SHG active cation com-... [Pg.452]

Phospholipids, which are one of the main structural components of the membrane, are present primarily as bilayers, as shown by molecular spectroscopy, electron microscopy and membrane transport studies (see Section 6.4.4). Phospholipid mobility in the membrane is limited. Rotational and vibrational motion is very rapid (the amplitude of the vibration of the alkyl chains increases with increasing distance from the polar head). Lateral diffusion is also fast (in the direction parallel to the membrane surface). In contrast, transport of the phospholipid from one side of the membrane to the other (flip-flop) is very slow. These properties are typical for the liquid-crystal type of membranes, characterized chiefly by ordering along a single coordinate. When decreasing the temperature (passing the transition or Kraft point, characteristic for various phospholipids), the liquid-crystalline bilayer is converted into the crystalline (gel) structure, where movement in the plane is impossible. [Pg.449]

Carotenoids are hydrophobic molecules and thus are located in lipophilic sites of cells, such as bilayer membranes. Their hydrophobic character is decreased with an increased number of polar substitutents (mainly hydroxyl groups free or esterified with glycosides), thus affecting the positioning of the carotenoid molecule in biological membranes. For example, the dihydroxycarotenoids such as LUT and zeaxanthin (ZEA) may orient themselves perpendicular to the membrane surface as molecular rivet in order to expose their hydroxyl groups to a more polar environment. In contrast, the carotenes such as (3-C and LYC could position themselves parallel to the membrane surface to remain in a more lipophilic environment in the inner core of the bilayer membranes (Parker, 1989 Britton, 1995). Thus, carotenoid molecules can have substantial effects on the thickness, strength, and fluidity of membranes and thus affect many of their functions. [Pg.368]

The crystal structure of the extracellular domain of P0 has also been determined [41]. The arrangement of molecules in the crystal indicates that P0 may exist on the membrane surface as a tetramer (Fig. 7-7) that can link to other tetramers from the opposing membrane to form an adhesive lattice, like a molecular Velcro . The structure also suggests that P0 mediates adhesion through the direct interaction of apically directed tryptophan side chains with the opposing membrane [42], in addition to homo-philic protein-protein interaction. [Pg.119]

Factors that influence drug dialyzability in chronic ambulatory peritoneal dialysis include drug-specific characteristics (e.g., molecular weight, solubility, degree of ionization, protein binding, and VD) and intrinsic properties of the peritoneal membrane (e.g., blood flow, pore size, and peritoneal membrane surface area). [Pg.892]

In these molecular communications an information molecule is selectively recognized and transduced by the corresponding receptor which is a characteristic protein assembly found on the cellular membrane surface as schematically illustrated in Fig.3. Major categories based on its constitutions are... [Pg.336]


See other pages where Membrane surface, molecular is mentioned: [Pg.508]    [Pg.508]    [Pg.530]    [Pg.31]    [Pg.36]    [Pg.2098]    [Pg.2228]    [Pg.790]    [Pg.579]    [Pg.168]    [Pg.354]    [Pg.527]    [Pg.71]    [Pg.208]    [Pg.113]    [Pg.51]    [Pg.443]    [Pg.450]    [Pg.452]    [Pg.455]    [Pg.819]    [Pg.39]    [Pg.41]    [Pg.305]    [Pg.405]    [Pg.234]    [Pg.209]    [Pg.301]    [Pg.306]    [Pg.308]    [Pg.574]    [Pg.98]    [Pg.386]    [Pg.137]    [Pg.118]    [Pg.603]    [Pg.356]    [Pg.464]    [Pg.258]   


SEARCH



Molecular surface

Surface membranes

© 2024 chempedia.info