Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Temperature, membrane reactors

Fig. 2 Comparison of the conversion of CO2 into carbon with conventional reactor with that of membrane reactor. Temperature at CO2 methanation was fixed at 300°C. closed symbol membrane reactor open symbol conventional fixed bed reactor... Fig. 2 Comparison of the conversion of CO2 into carbon with conventional reactor with that of membrane reactor. Temperature at CO2 methanation was fixed at 300°C. closed symbol membrane reactor open symbol conventional fixed bed reactor...
Membrane Reactor. Another area of current activity uses membranes in ethane dehydrogenation to shift the ethane to ethylene equiUbrium. The use of membranes is not new, and has been used in many separation processes. However, these membranes, which are mostly biomembranes, are not suitable for dehydrogenation reactions that require high temperatures. Technology has improved to produce ceramic and other inorganic (90) membranes that can be used at high temperatures (600°C and above). In addition, the suitable catalysts can be coated without blocking the pores of the membrane. Therefore, catalyst-coated membranes can be used for reaction and separation. [Pg.443]

As an example the use of ceramic membranes for ethane dehydrogenation has been discussed (91). The constmction of a commercial reactor, however, is difficult, and a sweep gas is requited to shift the product composition away from equiUbrium values. The achievable conversion also depends on the permeabihty of the membrane. Figure 7 shows the equiUbrium conversion and the conversion that can be obtained from a membrane reactor by selectively removing 80% of the hydrogen produced. Another way to use membranes is only for separation and not for reaction. In this method, a conventional, multiple, fixed-bed catalytic reactor is used for the dehydrogenation. After each bed, the hydrogen is partially separated using membranes to shift the equihbrium. Since separation is independent of reaction, reaction temperature can be optimized for superior performance. Both concepts have been proven in bench-scale units, but are yet to be demonstrated in commercial reactors. [Pg.443]

Fig. 7. Equihbrium conversion of ethane versus temperature at 210 kPa in a membrane reactor. The effect of hydrogen removal on ethane conversion is... Fig. 7. Equihbrium conversion of ethane versus temperature at 210 kPa in a membrane reactor. The effect of hydrogen removal on ethane conversion is...
The auto-thermal reaction of ethanol occurred in the shell side of a palladium membrane reactor in which a Zn-Cu/AlaOs industrial catalyst (MDC-3) was packed with silica powder. Ethanol-water mixture (nH2o/nEioH=l or 3) and oxygen (noa/nEioH=0.2,0.776 or 1.035) are fed concurrently to the shell side. The reaction temperatures were set at 593-723 K and the pijrasures were 3 10 atm. [Pg.818]

Fig.2. Ethanol autotherml reaction in the Pd/Ag membrane reactor at various temperature and... Fig.2. Ethanol autotherml reaction in the Pd/Ag membrane reactor at various temperature and...
One of the most studied applications of Catalytic Membrane Reactors (CMRs) is the dehydrogenation of alkanes. For this reaction, in conventional reactors and under classical conditions, the conversion is controlled by thermodynamics and high temperatures are required leading to a rapid catalyst deactivation and expensive operative costs In a CMR, the selective removal of hydrogen from the reaction zone through a permselective membrane will favour the conversion and then allow higher olefin yields when compared to conventional (nonmembrane) reactors [1-3]... [Pg.127]

In the isobutane dehydrogenation the catalytic membrane reactor allows a conversion which is twice the one observed in a conventional reactor operating under similar feed, catalyst and temperature conditions (and for which the performance corresponds to the one calculated from thermodynamics) [9]. [Pg.133]

The design of the Pd-membrane reactor was based on the chip design of reactor [R 10]. The membrane is a composite of three layers, silicon nitride, silicon oxide and palladium. The first two layers are perforated and function as structural support for the latter. They serve also for electrical insulation of the Pd film from the integrated temperature-sensing and heater element. The latter is needed to set the temperature as one parameter that determines the hydrogen flow. [Pg.288]

It is well known that dense ceramic membranes made of the mixture of ionic and electron conductors are permeable to oxygen at elevated temperatures. For example, perovskite-type oxides (e.g., La-Sr-Fe-Co, Sr-Fe-Co, and Ba-Sr-Co-Fe-based mixed oxide systems) are good oxygen-permeable ceramics. Figure 2.11 depicts a conceptual design of an oxygen membrane reactor equipped with an OPM. A detail of the ceramic membrane wall... [Pg.53]

Because Pd-alloy membranes operate at high temperatures in the range of WGS reaction and on the lower end of methane reforming reaction, they can be used in a membrane reactor configuration for the simultaneous separation of hydrogen. As discussed earlier,... [Pg.303]

Carbon molecular sieve membranes Resistant to contaminants Intermediate hydrogen flux and selectivity Intermediate hydrogen flux and selectivity High water permeability Pilot-scale testing in low temperature WGS membrane reactor application Need demonstration of long-term stability and durability in practical applications... [Pg.316]

Fig. 5. Methane conversion and oxygen flux during partial oxidation of methane in a ceramic membrane reactor. Reaction conditions pressure, 1 atm temperature, 1173 K, feed gas molar ratio, CH Ar = 80/20 feed flow rate, 20 mL min-1 (NTP) catalyst mass, 1.5 g membrane surface area, 8.4 cm2 (57). Fig. 5. Methane conversion and oxygen flux during partial oxidation of methane in a ceramic membrane reactor. Reaction conditions pressure, 1 atm temperature, 1173 K, feed gas molar ratio, CH Ar = 80/20 feed flow rate, 20 mL min-1 (NTP) catalyst mass, 1.5 g membrane surface area, 8.4 cm2 (57).
Monoglyceride (MG) is one of the most important emulsifiers in food and pharmaceutical industries [280], MG is industrially produced by trans-esterification of fats and oils at high temperature with alkaline catalyst. The synthesis of MG by hydrolysis or glycerolysis of triglyceride (TG) with immobilized lipase attracted attention recently, because it has mild reaction conditions and avoids formation of side products. Silica and celite are often used as immobilization carriers [281], But the immobilized lipase particles are difficult to reuse due to adsorption of glycerol on this carriers [282], PVA/chitosan composite membrane reactor can be used for enzymatic processing of fats and oils. The immobilized activity of lipase was 2.64 IU/cm2 with a recovery of 24%. The membrane reactor was used in a two-phase system reaction to synthesize monoglyceride (MG) by hydrolysis of palm oil, which was reused for at least nine batches with yield of 32-50%. [Pg.168]

There is a need for low-cost methane steam reforming catalysts that are active at low temperature and resistant to coke formation under membrane reactor conditions. Low-cost (Ni-based) catalysts are also needed that can withstand regeneration conditions in a sorption-enhanced reformer. [Pg.313]

Cox et al. (1995) portray a new approach to thermochemical gasification of biomass to hydrogen. The process is based on catalytic steam gasification of biomass with concurrent separation of hydrogen in a membrane reactor that employs a permselective membrane to separate the hydrogen as it is produced. The process is particularly well-suited for wet biomass and may be conducted at temperatures as low as 575 K. [Pg.199]

The same hyperbranched polyglycerol modified with hydrophobic palmitoyl groups was used for a noncovalent encapsulation of hydrophilic platinum Pincer [77]. In a double Michael addition of ethyl cyanoacetate with methyl vinyl ketone, these polymer supports indicated high conversion (81 to 59%) at room temperature in dichloromethane as a solvent. The activity was stiU lower compared with the noncomplexed Pt catalyst. Product catalyst separation was performed by dialysis allowing the recovery of 97% of catalytic material. This is therefore an illustrative example for the possible apphcation of such a polymer/catalyst system in continuous membrane reactors. [Pg.298]


See other pages where Temperature, membrane reactors is mentioned: [Pg.181]    [Pg.50]    [Pg.181]    [Pg.50]    [Pg.127]    [Pg.386]    [Pg.69]    [Pg.69]    [Pg.817]    [Pg.817]    [Pg.820]    [Pg.90]    [Pg.455]    [Pg.46]    [Pg.299]    [Pg.301]    [Pg.304]    [Pg.311]    [Pg.312]    [Pg.313]    [Pg.314]    [Pg.586]    [Pg.137]    [Pg.18]    [Pg.308]    [Pg.44]    [Pg.117]    [Pg.117]    [Pg.134]    [Pg.142]    [Pg.145]    [Pg.307]    [Pg.532]   
See also in sourсe #XX -- [ Pg.15 ]




SEARCH



Catalytic membrane reactors high-temperature configurations

High temperature membrane technology reactor

High-temperature catalytic membrane reactors

Inorganic membranes high-temperature catalytic membrane reactors

Membrane reactors operating temperature

Membrane reactors reaction temperature

Membrane temperature

Reactor temperature

© 2024 chempedia.info