Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

4- membered 2 + 2 cycloreversion

The tendency to undergo valence isomerization is generally of fundamental importance regarding the stability of the compounds. In the case where an equilibrium exists between the eight-membered ring and the bicyclo[4.2.0]octatriene, decomposition may readily occur by a [2 + 2] cycloreversion process, particularly if molecular nitrogen or a cyano compound can be eliminated. [Pg.509]

Triazine (38) is ideal for inverse electron-demand Diels-Alder cycloadditions, for example, with azulene to give a l,4-bis(CF3)phthalazine (89CB711). A rare example of the synthesis of a five-membered heterocycle originating from [4 + 1] cycloaddition followed by [4 + 2] cycloreversion was reported using (38). The intermediate tetraazanorbomadienimine (39) is highly strained and eliminates N2 [82AG(E)284]. [Pg.23]

A few studies have been carried out on the parent four- and five-membered cyclic sulfones—for thietane 1,1-dioxide (30) by Scala and Colon65 and for thiolane 1,1-dioxide (sulfolane) (31) by Honda and coworkers66 and, later, by Schuchmann and von Sonntag67. In the former compound, the major photochemical process, in the vacuum UV range, is the initial production of a trimethylene (C3H6) biradical and S02 (equation 9). In both the solid- (77 K) and gas-phase photolyses, formation of a triplet biradical appears to be favored. As well as the expected cyclopropane and propylene, ethylene is also obtained during these photolyses, presumably by a cycloreversion process (equation 10). [Pg.881]

The retro Diels-Alder reaction is strongly accelerated when an oxide anion substituent is incorporated at positions 1 and 2 of the six-membered ring which has to be cycloreversed, namely at one terminus carbon of the original diene or at one sp carbon of the dienophile [51] (Equation 1.22). [Pg.16]

A complex sequence of pericyclic reactions, intramolecular and intermolecular cycloadditions and cycloreversions, was studied in an attempt to readily achieve bicyclic five-membered heterocycles, the methyl 4,6-dihydrothieno- and methyl-... [Pg.81]

Cycloreversion with nitrile oxide formation is known not only in furoxans but also in isoxazolines, 1,2,4-oxadiazoles, furazans, and some other live-membered heterocycles (76). Such process, eliminating nitrile oxide fragment 3-R CeHiC N+Cr ", was observed mass spectrometrically in 3a,4,5,6-tetrahydro-[ 1,2,4 oxadiazolo[4,5-a J [ 1,5 benzodiazepine derivatives 11 (83). [Pg.8]

Here, six-membered cyclic nitronate (575) is initially assembled from the simple reagents according to known procedures, and this nitronate is silylated to give the intermediate A, whose [4+ 2]-cycloreversion affords silyl derivative of enoxime (574). Finally, desilylation of the latter compound gives rise to enoxime... [Pg.717]

If the cycloaddition and cycloreversion steps occurred under the same conditions, an equilibrium would establish and a mixture of reactant and product olefins be obtained, which is a severe limitation to its synthetic use. In many cases, however, the two steps can very well be separated, with the cycloreversion under totally different conditions often showing pronounced regioselectivity, e.g. for thermodynamic reasons (product vs. reactant stability), and this type of olefin metathesis has been successfully applied to organic synthesis. In fact, this aspect of the synthetic application of four-membered ring compounds has recently aroused considerable attention, as it leads the way to their transformation into other useful intermediates. For example aza[18]annulene (371) could be synthesized utilizing a sequence of [2 + 2] cycloaddition and cycloreversion. (369), one of the dimers obtained from cyclooctatetraene upon heating to 100 °C, was transformed by carbethoxycarbene addition to two tetracyclic carboxylates, which subsequently lead to the isomeric azides (368) and (370). Upon direct photolysis of these, (371) was obtained in 25 and 28% yield, respectively 127). Aza[14]annulene could be synthesized in a similar fashion I28). [Pg.138]

Since the norcarene intermediate 34 has a double bond in the 6-membered ring, a Diels-Alder cycloreversion leading to cyclopropene (35) and butadiene is also a possible disconnection. The corresponding synthetic sequence has been carried out in the laboratory in 37% yield [32] ... [Pg.99]

Besides the bond-pair cheletropic disconnection of oxiranes and aziridines to an alkene and "atomic oxygen" (from a carboxylic peracid) or a nitrene, respectively, and the hetero-Diels-Alder cycloreversion, of special interest are the 1,3-dipolar cycloeliminations of five-membered rings [-(34-2)] leading to 1,3-dipoles and an unsaturated acceptor or dipolarophile. So large is the number of different five-membered heterocyclic systems resulting from 1,3-dipolar... [Pg.176]

Metallacyclobutanes or other four-membered metallacycles can serve as precursors of certain types of carbene complex. [2 + 2] Cycloreversion can be induced thermally, chemically, or photochemically [49,591-595]. The most important application of this process is carbene-complex-catalyzed olefin metathesis. This reaction consists in reversible [2 + 2] cycloadditions of an alkene or an alkyne to a carbene complex, forming an intermediate metallacyclobutane. This process is discussed more thoroughly in Section 3.2.5. [Pg.100]

Cycloreversion of four-membered metallacycles is the most common method for the preparation of high-valent titanium [26,27,31,407,599-606] and zirconium [599,601] carbene complexes. These are usually very reactive, nucleophilic carbene complexes, with a strong tendency to undergo C-H insertion reactions or [2 -F 2] cycloadditions to alkenes or carbonyl compounds (see Section 3.2.3). Figure 3.31 shows examples of the generation of titanium and zirconium carbene complexes by [2 + 2] cycloreversion. [Pg.100]

Fig. 3.31. Generation of carbene complexes by [2 -i- 2] cycloreversion of four-membered metallacycles [26,27,605,607-609]. Fig. 3.31. Generation of carbene complexes by [2 -i- 2] cycloreversion of four-membered metallacycles [26,27,605,607-609].
Four-membered rings and their heterocyclic analogs that contain one or two carbonyl functions can follow three principal reaction paths when photolyzed in solution. Depending on the nature of the substituents, the mode of reaction can be (1) decarbonylation, (2) cycloreversion, or (3) ring expansion. [Pg.253]

The metathetical reaction of C02 with metal (Ti(IV), U(V)) arylimido-complexes led to an arylisocyanate and a metal-oxo species [4g, 115a]. In these processes, which take place under very mild conditions (ambient temperature and pressure), the metal center acts as the sink for unrequired oxygen. A common feature which characterizes these transformations from a mechanistic point of view is the intermediate formation of a metal carbimato-species through the [2+2] cycloaddition of C02 with the metal-imido complex (Scheme 6.23). By cycloreversion, the four-membered aza-metalla-cycle then converts into isocyanate and a stable metal-oxo complex. These processes, at least formally, are reminiscent of the reaction of imino-phosphoranes with C02 to give isocyanates and carbodiimides [115b,c]. [Pg.150]

Members of the previously unknown class of heterocycles, 1,2,4-selenadiphospholes 33 and 69, have been prepared (Scheme 44). The thermal reaction of 1,2,3-selenadiazole 1 with phosphaalkynes 209 gave products 33 and 69 in 17% and 16% yields, respectively <1996PS99>. These compounds are proposed to form by a sequence of [3+2] cycloreversion and cycloaddition reactions (see also Section 6.12.5.9). [Pg.571]

As an alternative to [3+2] cycloaddition, product 191 (X = Se) can be prepared in 90% yield using a [4+2] cycloreversion reaction of the six-membered heterocycle 206 in the presence of mesitonitrile oxide (Equation 22) <1999JA8811>. [Pg.730]

Bicyclic iridacyclobutene-containing complex 61 transforms into an iridacycloheptatriene 62 complex upon coordination of a water molecule (Equation 22), a reaction that can be interpreted as a cycloreversion, but is more readily visualized as a valence tautomerization of the five-membered iridacyclic alkylidene fragment <2004JA1610>. [Pg.574]

The acid-catalyzed Peterson olefination is presumably an E2-elimination, that is, a one-step reaction. On the other hand, the base-induced Peterson olefination probably takes place via an intermediate. In all probability, this intermediate is a four-membered heterocycle with a pentavalent, negatively charged Si atom. This heterocycle probably decomposes by a [2+2]-cycloreversion just like the oxaphosphetane intermediate of the Wittig reaction (Section 4.7.3). [Pg.195]

On the other hand, stabilized ylides react with aldehydes almost exclusively via trans-oxaphosphetanes. Initially, a small portion of the cw-isomer may still be produced. However, all the heterocyclic material isomerizes very rapidly to the fnms-configured, four-membered ring through an especially pronounced stereochemical drift. Only after this point does the [2+2]-cycloreversion start. It leads to triphenylphosphine oxide and an acceptor-substituted fnms-configured olefin. This frara-selectivity can be used, for example, in the C2 extension of aldehydes to /ran.v-con figured aj8-unsaturated esters (Figure 9.11) or in the fnms-selective synthesis of polyenes such as /1-carotene (Figure 9.12). [Pg.360]


See other pages where 4- membered 2 + 2 cycloreversion is mentioned: [Pg.27]    [Pg.116]    [Pg.117]    [Pg.158]    [Pg.167]    [Pg.221]    [Pg.287]    [Pg.350]    [Pg.612]    [Pg.687]    [Pg.472]    [Pg.578]    [Pg.9]    [Pg.370]    [Pg.375]    [Pg.383]    [Pg.331]    [Pg.1427]    [Pg.609]   
See also in sourсe #XX -- [ Pg.79 , Pg.332 , Pg.333 ]




SEARCH



Cycloreversion, , 4-membered rings

Cycloreversions

© 2024 chempedia.info