Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Matter, kinds

As might be expected, this simple picture does not hold perfectly. The coefficient of friction tends to increase with increasing velocity and also is smaller if the pavement is wet [14]. On a wet road, /x may be as small as 0.2, and, in fact, one of the principal reasons for patterning the tread and sides of the tire is to prevent the confinement of a water layer between the tire and the road surface. Similarly, the texture of the road surface is important to the wet friction behavior. Properly applied, however, measurements of skid length provide a conservative estimate of the speed of the vehicle when the brakes are first applied, and it has become a routine matter for data of this kind to be obtained at the scene of a serious accident. [Pg.438]

The matter of surface mobility has come up at several points in the preceding material. The subject has been a source of confusion—see Ref. 112. Actually, two kinds of concepts seem to have been invoked. The first is that invoked in the discussion of physical adsorption, which has to do with whether the adsorbate can move on the surface so freely that its state is essentially that of a two-dimensional nonideal gas. For an adsorbate to be mobile in this sense, surface barriers must be small compared to kT. This type of mobile adsorbed layer seems unlikely to be involved in chemisorption. [Pg.709]

As with any system, there are complications in the details. The CO sticking probability is high and constant until a 0 of about 0.5, but then drops rapidly [306a]. Practical catalysts often consist of nanometer size particles supported on an oxide such as alumina or silica. Different crystal facets behave differently and RAIRS spectroscopy reveals that CO may adsorb with various kinds of bonding and on various kinds of sites (three-fold hollow, bridging, linear) [307]. See Ref 309 for a discussion of some debates on the matter. In the case of Pd crystallites on a-Al203, it is proposed that CO impinging on the support... [Pg.736]

Consider two distinct closed thermodynamic systems each consisting of n moles of a specific substance in a volnme Vand at a pressure p. These two distinct systems are separated by an idealized wall that may be either adiabatic (lieat-impemieable) or diathermic (lieat-condncting). Flowever, becanse the concept of heat has not yet been introdnced, the definitions of adiabatic and diathemiic need to be considered carefiilly. Both kinds of walls are impemieable to matter a permeable wall will be introdnced later. [Pg.323]

We now turn to a new kind of boundary for a system, a wall penneable to matter. Molecules that pass tlirough a wall carry energy with them, so equation (A2.1.15) must be generalized to include the change of the energy with a change in the number of moles dn ... [Pg.342]

As shown in preceding sections, one can have equilibrium of some kinds while inhibiting others. Thus, it is possible to have thennal equilibrium (7 = T ) tln-ough a fixed impemieable diathemiic wall in such a case /i need not equal p, nor need /t equal It is possible to achieve mechanical equilibrium (p =p ) through a movable impemieable adiabatic wall in such a case the transfer of heat or matter is prevented, so T and p. [Pg.352]

The time is perhaps not yet ripe, however, for introducing this kind of correction into calculations of pore size distribution the analyses, whether based on classical thermodynamics or statistical mechanics are being applied to systems containing relatively small numbers of molecules where, as stressed by Everett and Haynes, the properties of matter must exhibit wide fluctuations. A fuller quantitative assessment of the situation in very fine capillaries must await the development of a thermodynamics of small systems. Meanwhile, enough is known to justify the conclusion that, at the lower end of the mesopore range, the calculated value of r is almost certain to be too low by many per cent. [Pg.154]

To examine a sample by inductively coupled plasma mass spectrometry (ICP/MS) or inductively coupled plasma atomic-emission spectroscopy (ICP/AES) the sample must be transported into the flame of a plasma torch. Once in the flame, sample molecules are literally ripped apart to form ions of their constituent elements. These fragmentation and ionization processes are described in Chapters 6 and 14. To introduce samples into the center of the (plasma) flame, they must be transported there as gases, as finely dispersed droplets of a solution, or as fine particulate matter. The various methods of sample introduction are described here in three parts — A, B, and C Chapters 15, 16, and 17 — to cover gases, solutions (liquids), and solids. Some types of sample inlets are multipurpose and can be used with gases and liquids or with liquids and solids, but others have been designed specifically for only one kind of analysis. However, the principles governing the operation of inlet systems fall into a small number of categories. This chapter discusses specifically substances that are normally liquids at ambient temperatures. This sort of inlet is the commonest in analytical work. [Pg.103]

A similar logic can be applied to copolymers. The story is a bit more complicated to tell, so we only outline the method. If penultimate effects operate, then the probabilities Ph, Pi2> and so on, defined by Eqs. (7.32)-(7.35) should be replaced by conditional probabilities. As a matter of fact, the kind of conditional probabilities needed must be based on the two preceding events. Thus reactions (7.E) and (7.F) are two of the appropriate reactions, and the corresponding probabilities are Pj n and V i2 - Rather than work out all of the possibilities in detail, we summarize the penultimate model as follows ... [Pg.455]

The methods just noted tell something about the physical characteristics of atmospheric particulate matter but nothing about its chemical composition. One can seek this kind of information for either individual particles or all particles en masse. Analysis of particles en masse involves analysis of a mixture of particles of many different compounds. How much of... [Pg.25]

The key here was the theory. The pioneers familiarity with both the kinematic and the dynamic theory of diffraction and with the real structure of real crystals (the subject-matter of Lai s review cited in Section 4.2.4) enabled them to work out, by degrees, how to get good contrast for dislocations of various kinds and, later, other defects such as stacking-faults. Several other physicists who have since become well known, such as A. Kelly and J. Menter, were also involved Hirsch goes to considerable pains in his 1986 paper to attribute credit to all those who played a major part. [Pg.220]

Schatz and Weidinger 1996). ( Condensed matter is a term mostly used by physicists to denote solid materials of all kinds, both crystalline and glassy, and also liquids.)... [Pg.237]

By way of example, Volume 26 in Group III (Crystal and Solid State Physics) is devoted to Diffusion in Solid Metals and Alloys, this volume has an editor and 14 contributors. Their task was not only to gather numerical data on such matters as self- and chemical diffusivities, pressure dependence of diffusivities, diffusion along dislocations, surface diffusion, but also to exercise their professional judgment as to the reliability of the various numerical values available. The whole volume of about 750 pages is introduced by a chapter describing diffusion mechanisms and methods of measuring diffusivities this kind of introduction is a special feature of Landolt-Bornstein . Subsequent developments in diffusion data can then be found in a specialised journal. Defect and Diffusion Forum, which is not connected with Landolt-Bdrnstein. [Pg.492]

A huge range of themes is presented here and I am bound to have got some matters wrong. Any reader who spots an error will be doing me a favor by kindly writing in and telling me about it at rwcl2 cam.ac.uk. Then, if by any chance there is a further edition, I can include corrections. [Pg.582]


See other pages where Matter, kinds is mentioned: [Pg.5]    [Pg.956]    [Pg.1179]    [Pg.1181]    [Pg.3018]    [Pg.513]    [Pg.20]    [Pg.21]    [Pg.23]    [Pg.426]    [Pg.97]    [Pg.191]    [Pg.253]    [Pg.149]    [Pg.154]    [Pg.430]    [Pg.158]    [Pg.226]    [Pg.146]    [Pg.75]    [Pg.65]    [Pg.111]    [Pg.122]    [Pg.145]    [Pg.200]    [Pg.264]    [Pg.332]    [Pg.361]    [Pg.439]    [Pg.473]    [Pg.6]    [Pg.252]    [Pg.356]    [Pg.375]    [Pg.406]    [Pg.572]   
See also in sourсe #XX -- [ Pg.12 ]




SEARCH



How We Tell Different Kinds of Matter Apart Physical and Chemical Properties

Kinds of Matter

The kinds of matter

© 2024 chempedia.info