Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Matrix assisted laser flight mass spectra

We have used accurate mass measurements obtained by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOFMS) to differentiate and profile saponins from M. truncatula roots. An example is provided (Fig.3.11) showing the MALDI-TOFMS spectra of a solid-phase extract of M truncatula root tissue. In this spectrum, we can identify multiple saponins. [Pg.49]

For the quick characterisation of polydisperse surfactants with relative high molecular weight distributions matrix-assisted laser desorption/ionisation (MALDI)-time of flight (TOF)-MS represented an interesting alternative since low mass compounds did not interfere with the mass spectrometric detection of the compounds of interest. For example, the mass spectrum of C12-APG (Fig. 2.7.8) exhibited equally spaced signals with Am/z 162 corresponding to sodiated adduct ions of the mono- (m/z 371) to heptaglucosides (m/z 1343) [7]. [Pg.228]

There are at least three possibile ways in which the inhibitor can bind to the active site (1) formation of a sulfide bond to a cysteine residue, with elimination of hydrogen bromide [Eq. (10)], (2) formation of a thiol ester bond with a cysteine residue at the active site [Eq. (11)], and (3) formation of a salt between the carboxyl group of the inhibitor and some basic side chain of the enzyme [Eq. (12)]. To distinguish between these three possibilities, the mass numbers of the enzyme and enzyme-inhibitor complex were measured with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI). The mass number of the native AMDase was observed as 24766, which is in good agreement with the calculated value, 24734. An aqueous solution of a-bromo-phenylacetic acid was added to the enzyme solution, and the mass spectrum of the complex was measured after 10 minutes. The peak is observed at mass number 24967. If the inhibitor and the enzyme bind to form a sulfide with elimination of HBr, the mass number should be 24868, which is smaller by about one... [Pg.15]

Figure 3-11 Matrix-assisted laser desorption / ionization time-of-flight (MALDI-TOF) mass spectrum of bovine erythrocyte Cu-Zn superoxide dismutase averaged over ten shots with background smoothing. One-half pi of solution containing 10 pmol of the enzyme in 5 mM ammonium bicarbonate was mixed with 0.5 pi of 50 mM a-cyanohydroxycinnamic acid dissolved in 30% (v / v) of acetoni-trile-0.1% (v / v) of trifluoroacetic acid. The mixture was dried at 37° C before analysis. The spectrum shows a dimer of molecular mass of 31,388 Da, singly charged and doubly charged molecular ions at 15,716, and 7870 Da, respectively. The unidentified ion at mass 8095.6 may represent an adduct of the matrix with the doubly charged molecular ion. Courtesy of Louisa Tabatabai. Figure 3-11 Matrix-assisted laser desorption / ionization time-of-flight (MALDI-TOF) mass spectrum of bovine erythrocyte Cu-Zn superoxide dismutase averaged over ten shots with background smoothing. One-half pi of solution containing 10 pmol of the enzyme in 5 mM ammonium bicarbonate was mixed with 0.5 pi of 50 mM a-cyanohydroxycinnamic acid dissolved in 30% (v / v) of acetoni-trile-0.1% (v / v) of trifluoroacetic acid. The mixture was dried at 37° C before analysis. The spectrum shows a dimer of molecular mass of 31,388 Da, singly charged and doubly charged molecular ions at 15,716, and 7870 Da, respectively. The unidentified ion at mass 8095.6 may represent an adduct of the matrix with the doubly charged molecular ion. Courtesy of Louisa Tabatabai.
Fig. 1. Matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF) spectrum of a trypsin-digested one-dimensional gel band. Peaks are labeled with their monoisotopic masses. Note that these are not the masses of the peptides, but of the peptide (pseudo)molecular ions. In MALDI spectra, peptide molecular ions arise predominantly through the addition of a proton to the peptide, giving a mass increase of 1.007 Da. The molecular ions are usually denoted as MH+ or [M+H]+. Fig. 1. Matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF) spectrum of a trypsin-digested one-dimensional gel band. Peaks are labeled with their monoisotopic masses. Note that these are not the masses of the peptides, but of the peptide (pseudo)molecular ions. In MALDI spectra, peptide molecular ions arise predominantly through the addition of a proton to the peptide, giving a mass increase of 1.007 Da. The molecular ions are usually denoted as MH+ or [M+H]+.
Since the signals are very short, simultaneous detection analysers or time-of-flight analysers are required. The probability of obtaining a useful mass spectrum depends critically on the specific physical proprieties of the analyte (e.g. photoabsorption, volatility, etc.). Furthermore, the produced ions are almost always fragmentation products of the original molecule if its mass is above approximately 500 Da. This situation changed dramatically with the development of matrix-assisted laser desorption ionization (MALDI) [17,18]. [Pg.33]

Since its discovery in 1987, matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) has become a common technique in the mass spectral analysis of biopolymers (1, 2). Its ease of operation, theoretically unlimited mass range, and ability to acquire an entire mass spectrum without scanning make the technique an excellent method to analyze high mass biopolymers. Combining such advantages with the capability of analyzing sub-picomole quantities of biopolymers makes MALDI-TOF MS extremely useful for routine mass analysis. [Pg.143]

Figure 6.31. Positive-ion MALDI-TOF reflectron mode mass spectrum of grape seed extract (matrix 2,5-dihydroxybenzoic acid). (Reprinted from Journal of Agricultural and Food Chemistry, 48, Yang and Chien, Characterization of grape procyanidins using high-performance liquid chromatography/mass spectrometry and matrix-assisted laser desorption time-of-flight mass spectrometry, p. 3993, Copyright 2000, with permission from American Chemical Society.)... Figure 6.31. Positive-ion MALDI-TOF reflectron mode mass spectrum of grape seed extract (matrix 2,5-dihydroxybenzoic acid). (Reprinted from Journal of Agricultural and Food Chemistry, 48, Yang and Chien, Characterization of grape procyanidins using high-performance liquid chromatography/mass spectrometry and matrix-assisted laser desorption time-of-flight mass spectrometry, p. 3993, Copyright 2000, with permission from American Chemical Society.)...
With a larger orifice (3.75 x 5.64 A) on the surface of the Cgo derivative 31, quantitative encapsulation of H2 molecule was accomplished (at 200°C, 800 atm) (Fig. 13) (54). The encapsulated H2 molecule exhibited a sharp singlet at —7.25 ppm in the NMR spectrum (o-dichlorobenzene-d4). It was also detected by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS). The activation energy for the H2 escape of 34kcal mol was experimentally obtained. Spectacularly, a single H2 molecule encapsulated inside 31 was recently observed by a single-crystal X-ray diffraction analysis (55). [Pg.223]

Josten, M., Reif, M., Szekat, C., Al-Sabti, N., Roemer, T., Sparbier, K., Kostrzewa, M., Rohde, H Sahl, H.G., and Bierbaum, G. (2013) Analysis of the matrix-assisted laser desorption ionization-time of flight mass spectrum of Staphylococcus aureus identifies mutations that allow differentiation of the main clonal lineages. J. Clin. Microbiol, 51,1809-1817. [Pg.442]


See other pages where Matrix assisted laser flight mass spectra is mentioned: [Pg.153]    [Pg.207]    [Pg.370]    [Pg.13]    [Pg.186]    [Pg.1279]    [Pg.204]    [Pg.411]    [Pg.283]    [Pg.843]    [Pg.3]    [Pg.144]    [Pg.355]    [Pg.879]    [Pg.540]    [Pg.153]    [Pg.57]    [Pg.35]    [Pg.59]    [Pg.140]    [Pg.445]    [Pg.219]    [Pg.110]    [Pg.708]    [Pg.1089]    [Pg.436]    [Pg.732]    [Pg.621]    [Pg.370]    [Pg.443]    [Pg.868]    [Pg.238]    [Pg.2]    [Pg.630]    [Pg.15]    [Pg.330]    [Pg.148]    [Pg.431]    [Pg.87]    [Pg.420]   


SEARCH



Laser assisted

Laser spectrum

Mass matrix

Matrix assisted

Matrix-assisted laser

Matrix-assisted laser spectrum

© 2024 chempedia.info