Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mathematical model vinyl polymerization kinetics

Detailed studies on the lipase-catalyzed polymerization of divinyl adipate and 1,4-butanediol were performed [41-44]. Bulk polymerization increased the reaction rate and molecular weight of the polymer however, the hydrolysis of the terminal vinyl ester significantly limited the formation of the polyester with high molecular weight. A mathematical model describing the kinetics of this polymerization was proposed, which effectively predicts the composition (terminal structure) of the polyester. [Pg.245]

In the case of polyester synthesis from divinyl esters, hydrolysis of the vinyl end group partly took place, resulting in the limitation of the polymer growth.201 A mathematical model showing the kinetics of the polymerization predicts the product composition. On the basis of these data, a batch-stirred reactor was designed to minimize temperature and mass-transfer effects.202 The efficient enzymatic production of polyesters was achieved using this reactor poly(l,4-butylene adipate) with Mn 2 x 104 was synthesized in 1 h at 60 °C. [Pg.269]

Characteristic kinetic and morphological features of vinyl chloride radical polymerization processes were reviewed in89. While developing a mathematical model for the polymerization of this monomer, Canadian90 and Soviet91 investigators concentrated their attention on the heterophase nature of the process. In both cases the dependence of kinetic constants on the viscosity of the medium was disregarded. [Pg.124]

Case Study 2 Comparison of Mathematical Models FOR Free Radical Homopolymerization of Vinyl Monomers in scCOj In this case study, a comparison of performance of the different kinetic models proposed in the literature for dispersion polymerization of styrene and MMA in SCCO2 is presented. The models used by Quintero-Ortega et al. [43] (models 1 and 2) and those presented by the groups of Kiparissides [47] (model 3) and Morbidelli... [Pg.321]

One unique but normally undesirable feature of continuous emulsion polymerization carried out in a stirred tank reactor is reactor dynamics. For example, sustained oscillations (limit cycles) in the number of latex particles per unit volume of water, monomer conversion, and concentration of free surfactant have been observed in continuous emulsion polymerization systems operated at isothermal conditions [52-55], as illustrated in Figure 7.4a. Particle nucleation phenomena and gel effect are primarily responsible for the observed reactor instabilities. Several mathematical models that quantitatively predict the reaction kinetics (including the reactor dynamics) involved in continuous emulsion polymerization can be found in references 56-58. Tauer and Muller [59] developed a kinetic model for the emulsion polymerization of vinyl chloride in a continuous stirred tank reactor. The results show that the sustained oscillations depend on the rates of particle growth and coalescence. Furthermore, multiple steady states have been experienced in continuous emulsion polymerization carried out in a stirred tank reactor, and this phenomenon is attributed to the gel effect [60,61]. All these factors inevitably result in severe problems of process control and product quality. [Pg.189]


See other pages where Mathematical model vinyl polymerization kinetics is mentioned: [Pg.360]    [Pg.215]    [Pg.2628]    [Pg.40]    [Pg.68]    [Pg.322]    [Pg.201]   
See also in sourсe #XX -- [ Pg.27 , Pg.42 ]




SEARCH



Model vinyl polymerization kinetics

Polymerization kinetics

Polymerization kinetics modelling

Polymerization modeling

Polymerization models

Polymerization vinylic

Vinyl polymerization

Vinyl polymerization kinetics

© 2024 chempedia.info