Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Material properties plastic pyramid

The present review shows how the microhardness technique can be used to elucidate the dependence of a variety of local deformational processes upon polymer texture and morphology. Microhardness is a rather elusive quantity, that is really a combination of other mechanical properties. It is most suitably defined in terms of the pyramid indentation test. Hardness is primarily taken as a measure of the irreversible deformation mechanisms which characterize a polymeric material, though it also involves elastic and time dependent effects which depend on microstructural details. In isotropic lamellar polymers a hardness depression from ideal values, due to the finite crystal thickness, occurs. The interlamellar non-crystalline layer introduces an additional weak component which contributes further to a lowering of the hardness value. Annealing effects and chemical etching are shown to produce, on the contrary, a significant hardening of the material. The prevalent mechanisms for plastic deformation are proposed. Anisotropy behaviour for several oriented materials is critically discussed. [Pg.117]

Another motivation for measurement of the microhardness of materials is the correlation of microhardness with other mechanical properties. For example, the microhardness value for a pyramid indenter producing plastic flow is approximately three times the yield stress, i.e. // 3T (Tabor, 1951). This is the basic relation between indentation microhardness and bulk properties. It is, however, only applicable to an ideally plastic solid showing no elastic strains. The correlation between H and Y is given in Fig. 1.1 for linear polyethylene (PE) and poly(ethylene terephthalate) (PET) samples with different morphologies. The lower hardness values of 30-45 MPa obtained for melt-crystallized PE materials fall below the /// T cu 3 value, which may be related to a lower stiff-compliant ratio for these lamellar structures (BaM Calleja, 1985b). PE annealed at ca 130 °C... [Pg.9]

AETP are distinguished by their unmatched thermal, mechanical, and chemical properties and are at the top position in the plastics performance pyramid. These materials have also been among the fastest growing segment of plastics giving way to new applications driven by iimovation. [Pg.3]

The microhardness technique is used when the specimen size is small or when a spatial map of the mechanical properties of the material within the micron range is required. Forces of 0.05-2 N are usually applied, yielding indentation depths in the micron range. While microhardness determined from the residual indentation is associated with the permanent plastic deformation induced in the material (see section on Basic Aspects of Indentation), microindentation testing can also provide information about the elastic properties. Indeed, the hardness to Young s modulus ratio HIE has been shown to be directly proportional to the relative depth recovery of the impression in ceramics and metals (2). Moreover, a correlation between the impression dimensions of a rhombus-based pyramidal indentation and the HIE ratio has been found for a wide variety of isotropic poljuneric materials (3). In oriented polymers, the extent of elastic recovery of the imprint along the fiber axis has been correlated to Young s modulus values (4). [Pg.566]


See other pages where Material properties plastic pyramid is mentioned: [Pg.745]    [Pg.27]    [Pg.110]    [Pg.505]    [Pg.3633]    [Pg.989]    [Pg.269]    [Pg.115]   
See also in sourсe #XX -- [ Pg.206 ]

See also in sourсe #XX -- [ Pg.206 ]




SEARCH



Plastic materialities

Plastic materialities plastics

Plastic materials

Plastic materials properties

Plastics pyramid

© 2024 chempedia.info