Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass spectrometry, transition

Naiiow-line uv—vis spectia of free atoms, corresponding to transitions ia the outer electron shells, have long been employed for elemental analysis usiag both atomic absorption (AAS) and emission (AES) spectroscopy (159,160). Atomic spectroscopy is sensitive but destmctive, requiring vaporization and decomposition of the sample iato its constituent elements. Some of these techniques are compared, together with mass spectrometry, ia Table 4 (161,162). [Pg.317]

In looking for the mechanism, many intermediates are assumed. Some of these are stable molecules in pure form but very active in reacting systems. Other intermediates are in very low concentration and can be identified only by special analytical methods, like mass spectrometry (the atomic species of hydrogen and halogens, for example). These are at times referred to as active centers. Others are in transition states that the reacting cheimicals form with atoms or radicals these rarely can be isolated. In heterogeneous catalytic reaction, the absorbed reactant can... [Pg.115]

As was suggested in the preceding discussion, most of the arene complexes isolated by metal-atom techniques are benzene derivatives. However, heterocyclic ligands are also known to act as 5- or 6-electron donors in transition-metal 7r-complexes (79), and it has proved possible to isolate heterocyclic complexes via the metal-atom route. Bis(2,6-di-methylpyridine)Cr(O) was prepared by cocondensation of Cr atoms with the ligand at 77 K (79). The red-brown product was isolated in only 2% yield the stoichiometry was confirmed by mass spectrometry, and the structure determined by X-ray crystal-structure analysis, which supported a sandwich formulation. [Pg.148]

Bray KL (2001) High Pressure Probes of Electronic Structure and Luminescence Properties of Transition Metal and Lanthanide Systems. 213 1-94 Bronstein LM (2003) Nanoparticles Made in Mesoporous Solids. 226 55-89 Bronstrup M (2003) High Throughput Mass Spectrometry for Compound Characterization in Drug Discovery. 225 275-294... [Pg.231]

Table 5.2 Selected-reaction monitoring (SRM) transitions nsed for MS-MS detection of the pesticides studied in the systematic investigations on APCI-MS signal response dependence on eluent flow rate. Reprinted from J. Chro-matogr.. A, 937, Asperger, A., Efer, J., Koal, T. and Enge-wald, W., On the signal response of various pesticides in electrospray and atmospheric pressure chemical ionization depending on the flow rate of eluent applied in liquid chromatography-mass spectrometry , 65-72, Copyright (2001), with permission from Elsevier Science... Table 5.2 Selected-reaction monitoring (SRM) transitions nsed for MS-MS detection of the pesticides studied in the systematic investigations on APCI-MS signal response dependence on eluent flow rate. Reprinted from J. Chro-matogr.. A, 937, Asperger, A., Efer, J., Koal, T. and Enge-wald, W., On the signal response of various pesticides in electrospray and atmospheric pressure chemical ionization depending on the flow rate of eluent applied in liquid chromatography-mass spectrometry , 65-72, Copyright (2001), with permission from Elsevier Science...
We have undertaken a series of experiments Involving thin film models of such powdered transition metal catalysts (13,14). In this paper we present a brief review of the results we have obtained to date Involving platinum and rhodium deposited on thin films of tltanla, the latter prepared by oxidation of a tltanliua single crystal. These systems are prepared and characterized under well-controlled conditions. We have used thermal desorption spectroscopy (TDS), Auger electron spectroscopy (AES) and static secondary Ion mass spectrometry (SSIMS). Our results Illustrate the power of SSIMS In understanding the processes that take place during thermal treatment of these thin films. Thermal desorption spectroscopy Is used to characterize the adsorption and desorption of small molecules, In particular, carbon monoxide. AES confirms the SSIMS results and was used to verify the surface cleanliness of the films as they were prepared. [Pg.81]

This chapter deals mainly with (multi)hyphenated techniques comprising wet sample preparation steps (e.g. SFE, SPE) and/or separation techniques (GC, SFC, HPLC, SEC, TLC, CE). Other hyphenated techniques involve thermal-spectroscopic and gas or heat extraction methods (TG, TD, HS, Py, LD, etc.). Also, spectroscopic couplings (e.g. LIBS-LIF) are of interest. Hyphenation of UV spectroscopy and mass spectrometry forms the family of laser mass-spectrometric (LAMS) methods, such as REMPI-ToFMS and MALDI-ToFMS. In REMPI-ToFMS the connecting element between UV spectroscopy and mass spectrometry is laser-induced REMPI ionisation. An intermediate state of the molecule of interest is selectively excited by absorption of a laser photon (the wavelength of a tuneable laser is set in resonance with the transition). The excited molecules are subsequently ionised by absorption of an additional laser photon. Therefore the ionisation selectivity is introduced by the resonance absorption of the first photon, i.e. by UV spectroscopy. However, conventional UV spectra of polyatomic molecules exhibit relatively broad and continuous spectral features, allowing only a medium selectivity. Supersonic jet cooling of the sample molecules (to 5-50 K) reduces the line width of their... [Pg.428]

Continuous distribution functions Some experiments, such as liquid chromatography or mass spectrometry, allow for the determination of continuous or quasi-continuous distribution functions, which are readily obtained by a transition from the discrete property variable X to the continuous variable X and the replacement of the discrete statistical weights g, by the continuous probability density g(X). For simplicity, we assume g(X) as being normalized J ° g(X)dX = 1. Averages and moments of a quantity Y(X) are defined by analogy to the discrete case as... [Pg.210]

Mass spectroscopy is one of the few analytical methods that matches the theoretical chemists desire to observe molecules isolated, in vacuum. As such, calculations of reactions pathways, transition state and co-ordination are directly relevant and appropriate to measurements made using mass spectrometry. [Pg.712]

In this paper, the photofragmentation of transition metal cluster complexes is discussed. The experimental information presented concerning the gas phase photodissociation of transition metal cluster complexes comes from laser photolysis followed by detection of fragments by ionization (5.). Ion counting techniques are used for detection because they are extremely sensitive and therefore suitable for the study of molecules with very low vapor pressures (6.26.27). In addition, ionization techniques allow the use of mass spectrometry for unambiguous identification of signal carriers. [Pg.75]

Mass spectrometry has generally been employed in this series of compounds mainly for routine structure determination. The fragmentation pathways of some derivatives of 43 have been studied using accurate mass and metastable-transition measurements <1997JHC435>. [Pg.556]


See other pages where Mass spectrometry, transition is mentioned: [Pg.1282]    [Pg.77]    [Pg.233]    [Pg.135]    [Pg.197]    [Pg.28]    [Pg.206]    [Pg.392]    [Pg.230]    [Pg.220]    [Pg.80]    [Pg.137]    [Pg.204]    [Pg.401]    [Pg.208]    [Pg.34]    [Pg.30]    [Pg.482]    [Pg.614]    [Pg.256]    [Pg.257]    [Pg.371]    [Pg.65]    [Pg.1612]   


SEARCH



Mass transit

© 2024 chempedia.info