Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass spectrometry function

Vapor pressure osmometry Ultracentrifiigation Gel filtration Laser Light Scattering Field desorption mass spectrometry Functional Group Analysis... [Pg.8]

Decaestecker, T.N. et al., Evaluation of automated single mass spectrometry to tandem mass spectrometry function switching for comprehensive drug profiling analysis using a quadrupole time-of-flight mass spectrometer, Rapid Commun. Mass Spectrom., 14, 1787, 2000. [Pg.56]

Lover T ef a/1997 Functionalization and capping of a CdS nanocluster a study of ligand exchange by electrospray mass spectrometry Chem. Mater. 9 1878... [Pg.2919]

The first mass spectrometric investigation of the thiazole ring was done by Clarke et al. (271). Shortly after, Cooks et al., in a study devoted to bicydic aromatic systems, demonstrated the influence of the benzo ring in benzothiazole (272). Since this time, many studies have been devoted to the influence of various types of substitution upon fragmentation schemes and rearrangements, in the case of alkylthiazoles by Buttery (273) arylthiazoles by Aune et al. (276), Rix et al. (277), Khnulnitskii et al. (278) functional derivatives by Salmona el al. (279) and Entenmann (280) and thiazoles isotopically labeled with deuterium and C by Bojesen et al. (113). More recently, Witzhum et al. have detected the presence of simple derivatives of thiazole in food aromas by mass spectrometry (281). [Pg.81]

The main difference between field ionization (FI) and field desorption ionization (FD) lies in the manner in which the sample is examined. For FI, the substance under investigation is heated in a vacuum so as to volatilize it onto an ionization surface. In FD, the substance to be examined is placed directly onto the surface before ionization is implemented. FI is quite satisfactory for volatile, thermally stable compounds, but FD is needed for nonvolatile and/or thermally labile substances. Therefore, most FI sources are arranged to function also as FD sources, and the technique is known as FI/FD mass spectrometry. [Pg.23]

In TOP mass spectrometry, ions of different m/z values are detected as a function of their velocities along a flight tube (see Chapters 20 through 23). [Pg.407]

In Secondary Ion Mass Spectrometry (SIMS), a solid specimen, placed in a vacuum, is bombarded with a narrow beam of ions, called primary ions, that are suffi-ciendy energedc to cause ejection (sputtering) of atoms and small clusters of atoms from the bombarded region. Some of the atoms and atomic clusters are ejected as ions, called secondary ions. The secondary ions are subsequently accelerated into a mass spectrometer, where they are separated according to their mass-to-charge ratio and counted. The relative quantities of the measured secondary ions are converted to concentrations, by comparison with standards, to reveal the composition and trace impurity content of the specimen as a function of sputtering dme (depth). [Pg.40]

A large number of silylating agents exist for the introduction of the trimethylsilyl group onto a variety of alcohols. In general, the sterically least hindered alcohols are the most readily silylated, but are also the most labile to hydrolysis with either acid or base. Trimethylsilylation is used extensively for the derivatization of most functional groups to increase their volatility for gas chromatography and mass spectrometry. [Pg.116]

Other methods of identification include the customary preparation of derivatives, comparisons with authentic substances whenever possible, and periodate oxidation. Lately, the application of nuclear magnetic resonance spectroscopy has provided an elegant approach to the elucidation of structures and stereochemistry of various deoxy sugars (18). Microcell techniques can provide a spectrum on 5-6 mg. of sample. The practicing chemist is frequently confronted with the problem of having on hand a few milligrams of a product whose structure is unknown. It is especially in such instances that a full appreciation of the functions of mass spectrometry can be developed. [Pg.214]

An example of how information from fragmentation patterns can be used to solve structural problems is given in Worked Example 12.1. This example is a simple one, but the principles used are broadly applicable for organic structure determination by mass spectrometry. We ll see in the next section and in later chapters that specific functional groups, such as alcohols, ketones, aldehydes, and amines, show specific kinds of mass spectral fragmentations that can be interpreted to provide structural information. [Pg.413]

Mass Spectrometry of Some Common Functional Groups 415... [Pg.415]

We saw in Chapter 12 that mass spectrometry gives a molecule s formula and infrared spectroscopy identifies a molecule s functional groups. Nuclear magnetic resonance spectroscopy does not replace either of these techniques rather, it complements them by "mapping" a molecule s carbon-hydrogen framework. Taken together, mass spectrometry, JR, and NMR make it possible to determine the structures of even very complex molecules. [Pg.440]

Mass spectrometry Molecular size and formula IR spectroscopy Functional groups present NMR spectroscopy Carbon-hydrogen framework UV spectroscopy Nature of conjugated tt electron system... [Pg.500]

Xylans as true homopolymers occur in seaweeds of the Palmariales and Nemaliales, however, their backbone consists of Xylp residues linked by -(1 3) (Type X3, Fig. la) or mixed -(1 3, 1 -> 4)-glycosidic linkages (Type Xmy Fig. lb). They are assumed mainly to have a structural function in the cell-wall architecture, but a reserve function cannot be ruled out [4]. From the microfibrils of green algae (Siphonales) such as Caulerpa and Bryop-sis sp., X3 was isolated and the structure confirmed by methylation analysis, C-NMR spectroscopy [7], as well as by mass spectrometry of enzymically released linear oligosaccharides up to a degree of polymerization (DP) of... [Pg.6]

A structurally related tetrameric macroheterocycle is compound 13 that is prepared in a one-pot synthesis (yield 64%) from salicylaldehyde and (3-aminophenyl)boronic acid in methanol (Fig. 4). Due to its insolubility it has been characterized only by mass spectrometry. If a substitutent is introduced at the imine function (R = Me, Ph), trimeric structures (14 and 15) are... [Pg.7]

The characteristics of an ideal liquid chromatography-mass spectrometry interface have been discussed, with emphasis having been placed upon the major incompatibilities of the two component techniques that need to be overcome to allow the combination to function effectively. [Pg.23]

Total-ion-current trace A plot of the total number of ions reaching the mass spectrometry detector as a function of analysis time. [Pg.311]


See other pages where Mass spectrometry function is mentioned: [Pg.67]    [Pg.284]    [Pg.285]    [Pg.67]    [Pg.284]    [Pg.285]    [Pg.8]    [Pg.340]    [Pg.201]    [Pg.208]    [Pg.349]    [Pg.549]    [Pg.172]    [Pg.70]    [Pg.85]    [Pg.310]    [Pg.226]    [Pg.287]    [Pg.3]    [Pg.46]    [Pg.350]    [Pg.415]    [Pg.33]    [Pg.33]    [Pg.224]    [Pg.433]    [Pg.206]    [Pg.454]    [Pg.80]    [Pg.145]    [Pg.276]    [Pg.6]    [Pg.43]   
See also in sourсe #XX -- [ Pg.239 ]




SEARCH



Functional mass spectrometry

Functional proteomics, quantitative mass spectrometry

High-Throughput Microbial Characterizations Using Electrospray Ionization Mass Spectrometry and Its Role in Functional Genomics

Mass Spectrometry of Some Common Functional Groups

Mass function

Mass spectrometry functional group fragmentation

Quantitative Mass Spectrometry for Comparative and Functional Proteomics

Spectrometry function

Tandem mass spectrometry functionality

© 2024 chempedia.info