Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass-flux calculations, exchange rates

Budget methods. Vertical exchange rates and turbulent diffusivities Kz can be calculated from the heat balance or the mass balance of tracers for which transformation rates are known. Assuming horizontal homogeneity, the temporal change of tracer mass below a given depth z must be the sum of the net vertical mass flux through the cross-section at z and all sources and sinks of tracer mass below z. In the case of conservative tracers sources and sinks below z must be mass fluxes across the sediment-water interface. In the case of H, radioactive decay is an additional sink. In the case of He, tritium decay represents a source. If the increase of mass due to all sources and sinks, Sm, is known, the net mass flux can be calculated ... [Pg.658]

To assess the relative importance of the volatilisation removal process of APs from estuarine water, Van Ry et al. constructed a box model to estimate the input and removal fluxes for the Hudson estuary. Inputs of NPs to the bay are advection by the Hudson river and air-water exchange (atmospheric deposition, absorption). Removal processes are advection out, volatilisation, sedimentation and biodegradation. Most of these processes could be estimated only the biodegradation rate was obtained indirectly by closing the mass balance. The calculations reveal that volatilisation is the most important removal process from the estuary, accounting for 37% of the removal. Degradation and advection out of the estuary account for 24 and 29% of the total removal. However, the actual importance of degradation is quite uncertain, as no real environmental data were used to quantify this process. The residence time of NP in the Hudson estuary, as calculated from the box model, is 9 days, while the residence time of the water in the estuary is 35 days [16]. [Pg.769]

Several studies have investigated empirically the flux of chemicals within snow or between snow and the atmosphere (Guimbaud et al., 2002 Albert and Shultz, 2002 Herbert et al., 2006). In particular, measured concentration gradients within the atmospheric boundary layer or within the snow pack have been used to calculate a chemical s flux into or out of the snow pack. This approach has resulted in miscellaneous parameterizations to calculate fluxes of, for example, carbonyl compounds and NO c species from the snow pack as a result of photochemical processes in snow (Domind and Shepson, 2002 Hutterli et al., 1999 Guimbaud et al., 2002 Grannas et al., 2002). However, flux measurements can only be used to derive kinetic transport parameters, such as diffusivities and mass transport coefficients, if the chemicals involved are reasonably persistent and do not undergo rapid conversions within the snow pack. For example, measurements of the flux of carbonyl compounds out of snow are more likely to reflect the kinetics of formation in the snow pack than the kinetics of snow-air gas exchange. As a result, there is a very limited number of experimental studies that provide quantitative information on the rate of chemical transport in snow. [Pg.521]


See other pages where Mass-flux calculations, exchange rates is mentioned: [Pg.94]    [Pg.202]    [Pg.368]    [Pg.247]    [Pg.245]    [Pg.659]    [Pg.119]    [Pg.367]    [Pg.1074]    [Pg.31]    [Pg.195]    [Pg.196]    [Pg.6]    [Pg.182]   
See also in sourсe #XX -- [ Pg.88 ]




SEARCH



Exchange flux

Flux rate

Flux rate, calculation

Mass calculating

Mass calculations

Mass exchangers

Mass rates

Rate, calculating

© 2024 chempedia.info