Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass barriers

Functionally, as shown in Figure 4.10, the protection layer is intended first to serve as a mass barrier to both chromium cation outward and oxygen inward transport... [Pg.198]

The use of colorants in plastics is driven almost exclusively by marketing considerations, using product appearance to influence consumers. Colorants do not add mechanical strength or improve mass barrier properties. However, they may give an opaque appearance that can contribute to light protection of a packaged product. [Pg.171]

In this equation, m. is the effective mass of the reaction coordinate, q(t -1 q ) is the friction kernel calculated with the reaction coordinate clamped at the barrier top, and 5 F(t) is the fluctuating force from all other degrees of freedom with the reaction coordinate so configured. The friction kernel and force fluctuations are related by the fluctuation-dissipation relation... [Pg.889]

The accuracy of the CSP approximation is, as test calculations for model. systems show, typically very similar to that of the TDSCF. The reason for this is that for atomic scale masses, the classical mean potentials are very similar to the quantum mechanical ones. CSP may deviate significantly from TDSCF in cases where, e.g., the dynamics is strongly influenced by classically forbidden regions of phase space. However, for simple tunneling cases it seems not hard to fix CSP, by running the classical trajectories slightly above the barrier. In any case, for typical systems the classical estimate for the mean potential functions works extremely well. [Pg.369]

The uncertainty principle, according to which either the position of a confined microscopic particle or its momentum, but not both, can be precisely measured, requires an increase in the carrier energy. In quantum wells having abmpt barriers (square wells) the carrier energy increases in inverse proportion to its effective mass (the mass of a carrier in a semiconductor is not the same as that of the free carrier) and the square of the well width. The confined carriers are allowed only a few discrete energy levels (confined states), each described by a quantum number, as is illustrated in Eigure 5. Stimulated emission is allowed to occur only as transitions between the confined electron and hole states described by the same quantum number. [Pg.129]

Medicine. The polymethacrylates have been used for many years in the manufacture of dentures, teeth, denture bases, and filling materials (116,117) (see Dental materials). In the orthodontics market, methacrylates have found acceptance as sealants, or pit and fissure resin sealants which are painted over teeth and act as a barrier to tooth decay. The dimensional behavior of curing bone-cement masses has been reported (118), as has the characterization of the microstmcture of a cold-cured acryUc resin (119). Polymethacrylates are used to prepare both soft and hard contact lenses (120,121). Hydrogels based on 2-hydroxyethyl methacrylate are used in soft contact lenses and other biomedical appHcations (122,123) (see Contactlenses). [Pg.271]

Physically the cutting-corner trajectory implies that the particle crosses the barrier suddenly on the time scale of the slow -vibration period. In the literature this approximation is usually called sudden , frozen bath and fast flip approximation, or large curvature case. In the opposite case of small curvature (also called adiabatic and slow flip approximation), coj/coo < sin tp, which is relevant for transfer of fairly heavy masses, the MEP may be taken to a good accuracy to be the reaction path. [Pg.36]

When the mass of the tunneling particle is extremely small, it tunnels in the one-dimensional static barrier. With increasing mass, the contribution from the intermolecular vibrations also increases, and this leads to a weaker mass dependence of k, than that predicted by the onedimensional theory. That is why the strong isotope H/D effect is observed along with a weak k m) dependence for heavy transferred particles, as illustrated in fig. 18. It is this circumstance that makes the transfer of heavy reactants (with masses m < 20-30) possible. [Pg.36]

In the opposite case of slow flip limit, cojp co, the exponential kernel can be approximated by the delta function, exp( —cUj t ) ii 2S(r)/coj, thus renormalizing the kinetic energy and, consequently, multiplying the particle s effective mass by the factor M = 1 + X The rate constant equals the tunneling probability in the adiabatic barrier I d(Q) with the renormalized mass M, ... [Pg.90]

Quantum-chemical calculations of PES for carbonic acid dimers [Meier et al. 1982] have shown that at fixed heavy-atom coordinates the barrier is higher than 30kcal/mol, and distance between O atoms is 2.61-2.71 A. Stretching skeleton vibrations reduce this distance in the transition state to 2.45-2.35 A, when the barrier height becomes less than 3 kcal/mol. Meier et al. [1982] have stressed that the transfer is possible only due to the skeleton deformation, which shortens the distances for the hydrogen atom tunneling from 0.6-0.7 A to 0.3 A. The effective tunneling mass exceeds 2mn-... [Pg.104]

Although the rotation barrier is chiefly created by the high-frequency modes, it is necessary to consider coupling to low-frequency vibrations in order to account for subtler effects such as temperature shift and broadening of tunneling lines. The interaction with the vibrations q (with masses and frequencies m , tu ) has the form... [Pg.121]

As stated by inequality (2.81) (see also section 4.2 and fig. 30), when the tunneling mass grows, the tunneling regime tends to be adiabatic, and the extremal trajectory approaches the MEP. The transition can be thought of as a one-dimensional tunneling in the vibrationally adiabatic barrier (1.10), and an estimate of and can be obtained on substitution of the parameters of this barrier in the one-dimensional formulae (2.6) and (2.7). The rate constant falls into the interval available for measurements if, as the mass m is increased, the barrier parameters are decreased so that the quantity d(Vom/mn) remains approximately invariant. [Pg.128]


See other pages where Mass barriers is mentioned: [Pg.200]    [Pg.201]    [Pg.241]    [Pg.243]    [Pg.189]    [Pg.697]    [Pg.200]    [Pg.201]    [Pg.241]    [Pg.243]    [Pg.189]    [Pg.697]    [Pg.301]    [Pg.31]    [Pg.779]    [Pg.1840]    [Pg.2912]    [Pg.197]    [Pg.359]    [Pg.24]    [Pg.236]    [Pg.548]    [Pg.480]    [Pg.321]    [Pg.513]    [Pg.76]    [Pg.228]    [Pg.243]    [Pg.308]    [Pg.634]    [Pg.733]    [Pg.799]    [Pg.800]    [Pg.837]    [Pg.261]    [Pg.4]    [Pg.6]    [Pg.119]    [Pg.127]    [Pg.128]    [Pg.490]    [Pg.144]    [Pg.356]   
See also in sourсe #XX -- [ Pg.96 ]




SEARCH



Barrier for Heat and Mass Transport

Engineered barriers chemical mass transfer

Improved drying, mass transfer barrier

Interfacial barriers to mass transfer

Mass transfer barrier

Mass transport barrier

Minimization, mass transfer barriers

Osmotic mass transfer barriers

Process-Induced Minimization of Mass Transfer Barriers for Improved Drying

© 2024 chempedia.info