Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mannich reactions substrates

SCHEME 1139 Chiral Ca-PyBox-catalyzed asymmetric Mannich reaction Substrate scope of aromatic imines. [Pg.412]

Frontier orbital theory predicts that electrophilic substitution of pyrroles with soft electrophiles will be frontier controlled and occur at the 2-position, whereas electrophilic substitution with hard electrophiles will be charge controlled and occur at the 3-position. These predictions may be illustrated by the substitution behaviour of 1-benzenesulfonylpyr-role. Nitration and Friedel-Crafts acylation of this substrate occurs at the 3-position, whereas the softer electrophiles generated in the Mannich reaction (R2N=CH2), in formylation under Vilsmeier conditions (R2N=CHC1) or in formylation with dichloromethyl methyl ether and aluminum chloride (MeO=CHCl) effect substitution mainly in the 2-position (81TL4899, 81TL4901). Formylation of 2-methoxycarbonyl-l-methylpyrrole with... [Pg.45]

Heterocycles as reagents and substrates in modem modifications of the Mannich reaction 98AG(E)1045. [Pg.211]

With an unsymmetrical ketone as CH-acidic substrate, two regioisomeric products can be formed. A regioselective reaction may in such cases be achieved by employing a preformed iminium salt instead of formaldehyde and ammonia. An iminium salt reagent—the Eschenmoser salt—has also found application in Mannich reactions. ... [Pg.195]

Alternatively a Mannich-like pathway may be followed (see Mannich reaction), where ammonia reacts with the aldehyde 1 to give an intermediate iminium species, that adds hydrogen cyanide to give the a-amino nitrile 2. The actual mechanistic pathway followed depends on substrate structure and reaction conditions. [Pg.271]

The aza-Cope/Mannich reaction takes advantage of the facility with which a y,<5-unsaturated itninium ion, such as 6, participates in a [3,3] sigmatropic rearrangement to give an isomeric species which is suitably functionalized for an intramolecular and irreversible Mannich cyclization (see intermediate 7). The aza-Cope rearrangement substrate 6 is simply an unsaturated iminium ion which can be fashioned in a number of ways from a homoallylic... [Pg.642]

Kobayashi and his team have utilized a catalytic system similar to that used in their development of a Zr-catalyzed Mannich reaction (Schemes 6.27—6.29) to develop a related cycloaddition process involving the same imine substrates as used previously (Scheme 6.35) [105]. As the representative examples in Scheme 6.35 demonstrate, good yields and enantioselectivities (up to 90% ee) are achieved. Both a less substituted version of the Danishefsky diene (—> 110) and those that bear an additional Me group (e. g.— 111) can be utilized. Also as before, these workers propose complex 89, bearing two binol units, to be the active catalytic species. [Pg.215]

Interestingly, fundamentally different stereoinduction mechanisms have been proposed for the activation of a number of related imine substrates, studies that resulted in the development of simple and highly effective new catalytic systems (27) for the addition of silyl ketene acetals to Al-Boc-protected aldimines (Mannich reaction) (Scheme 11.12c). ... [Pg.332]

After having proven that BINOL phosphates serve as organocatalysts for asymmetric Mannich reactions, Akiyama and Terada et al. reasoned that the concept of electrophilic activation of imines by means of chiral phosphoric acids might be applicable to further asymmetric transformations. Other groups recognized the potential of these organocatalysts as well. They showed that various nucleophiles can be used. Subsequently, chiral phosphates were found to activate not only imines, but also other substrates. [Pg.403]

Takemoto et al. discovered N-phosphinoyl-protected aldimines as suitable electrophilic substrates for the enantioselective aza-Henry [224] (nitro-Mannich) reaction [72] with nitromethane, when utilizing thiourea 12 (10mol%) as the catalyst in dichloromethane at room temperature [225]. The (S)-favored 1,2-addition of nitromethane to the electron-deficient C=N double bond allowed access to various P-aryl substituted N-phosphinoyl-protected adducts 1-5 in consistently moderate to good yields (72-87%) and moderate enantioselectivities (63-76%) as depicted in Scheme 6.73. Employing nitroethane under unchanged reaction conditions gave adduct 6 as a mixture of diastereomers (dr 73 27) at an ee value of 67% (83% yield) of the major isomer (Scheme 6.73). [Pg.218]

In contrast to the results obtained by Jacobsen et al. when utilizing Schiff base catalyst 42, the decrease of reaction temperature to -40 °C reduced the yield as well as enantioselectivity of the resulting Mannich adduct (Scheme 6.175) [201]. Catalyst 198 found to be less effective in the Mannich reaction in terms of yield and enantiomeric induction due to reduced basicity of the N-acylamine and weaker hydrogen-bonding interactions compared to the more basic Strecker substrates (Scheme 6.174). [Pg.321]

The original synthesis of duloxetine (3) is relatively straightforward, involving a four-step sequence from readily available 2-acetylthiophene 30 (Scheme 14.7). Understandably, the main synthetic challenge stems from the presence of a chiral center, because duloxetine (3) is marketed as the (5)-enantiomer as shown. Thus, a Mannich reaction between 30 and dimethylamine generated ketone amine 31, which was then reduced to provide intermediate racemic alcohol amine 32. The desired optically active (5)-alcohol 32a was accessed via resolution of racemate 32 with (5)-(+)-mandelic acid, which provided the necessary substrate for etherihcation with 1-fluoronaphthalene to afford optically active amine 33. Finally, A -demethylation with 2,2,2-trichloroethyl chloroformate and cleavage of the intermediate carbamate with zinc powder and formic acid led to the desired target duloxetine (3). [Pg.207]

A further development of the Mannich reaction is the boronic Mannich reaction, which has been described extensively by Petasis and co-workers under conventional heating methods. Gupta et al. (Personal Chemistry, Uppsala, Sweden, internal report) have performed this reaction under microwave condition in acetonitrile (Scheme 5.11). A reaction time of 4 min at 120° C afforded the products in yields ranging from 25 to 100%. Alternative amines and boronic acids could be used, but the glyoxylic acid was essential for product formation. The major drawback with this reaction under microwave conditions at present is that the outcome is highly substrate dependent. [Pg.111]

In origin, the Mannich reaction is a three-component reaction between an eno-lizable CH-acidic carbonyl compound, an amine, and an aldehyde producing / -aminocarbonyl compounds. Such direct Mannich reactions can encompass severe selectivity problems since both the aldehyde and the CH-acidic substrate can often act as either nucleophile or electrophile. Aldol addition and condensation reactions can be additional competing processes. Therefore preformed electrophiles (imines, iminium salts, hydrazones) or nucleophiles (enolates, enamines, enol ethers), or both, are often used, which allows the assignment of a specific role to each car-... [Pg.277]

The Mannich reaction [18, 19] is a widely applied means of producing /i-amino carbonyl compounds starting from cheap and readily available substrates. In this reaction an aldehyde 20, an amine 21, and a ketone 22 react in a three-component-one-pot synthesis (Scheme 5.12, pathway 1). As a synthetic alternative, the reaction can also be performed as a nucleophilic addition of a C-nucleophile 22 to a preformed imine 24 which is prepared starting from the aldehyde and an amine source (Scheme 5.12, pathway 2). [Pg.97]

Scheme3.3. Retro-Diels-Alder [9], retro-aldol [10] and retro-Mannich reaction [11] of strained substrates. Scheme3.3. Retro-Diels-Alder [9], retro-aldol [10] and retro-Mannich reaction [11] of strained substrates.
High anti-diastereoselectivity is observed for several aromatic imines for ortho-substituted aromatic imines the two newly formed stereocenters are created with almost absolute stereocontrol. Aliphatic imines can also be used as substrates and the reaction is readily performed on the gram scale with as little as 0.25 mol% catalyst loading. Furthermore, the Mannich adducts are readily transformed to protected a-hydroxy-/8-amino acids in high yield. The absolute stereochemistry of the Mannich adducts revealed that Et2Zn-linked complex 3 affords Mannich and aldol adducts with the same absolute configuration (2 R). However, the diastereoselectiv-ity of the amino alcohol derivatives is anti, which is opposite to the syn-l,2-diol aldol products. Hence, the electrophiles approach the re face of the zinc enolate in the Mannich reactions and the si face in the aldol reactions. The anti selectivity is... [Pg.361]


See other pages where Mannich reactions substrates is mentioned: [Pg.164]    [Pg.646]    [Pg.348]    [Pg.244]    [Pg.76]    [Pg.211]    [Pg.155]    [Pg.506]    [Pg.138]    [Pg.387]    [Pg.131]    [Pg.200]    [Pg.257]    [Pg.269]    [Pg.332]    [Pg.51]    [Pg.791]    [Pg.35]    [Pg.45]    [Pg.607]    [Pg.807]    [Pg.141]    [Pg.512]    [Pg.512]    [Pg.321]    [Pg.98]    [Pg.106]    [Pg.349]    [Pg.220]    [Pg.225]   
See also in sourсe #XX -- [ Pg.212 ]




SEARCH



Substrate reaction

© 2024 chempedia.info