Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Magnesium, organic compounds with

Many reactions can be carried out between potassium cyanide and organic compounds with the alkalinity of the KCN acting as a catalyst these reactions are analogous to reactions of sodium cyanide. The reactions of potassium cyanide with sulfur and sulfur compounds are also analogous to those of sodium cyanide. Potassium cyanide is reduced to potassium metal and carbon by heating it out of contact with air in the presence of powdered magnesium. Magnesium is converted to the nitride ... [Pg.385]

The method of hydrolysis depends on the nature of the product. It is usually sufficient to add dilute sulphuric acid to the ethereal solution and to shake thoroughly, when the magnesium enters the aqueous solution, whilst the organic compound remains in the ether. Alternatively, however, the ethereal solution may be poured on to ice and water, and then treated with dilute sulphuric acid. Should the product be affected by this acid, the hydrolysis can be carried out with an aqueous solution of ammonium chloride. In the following examples the hydrolysis is usually shown as a simple double decomposition... [Pg.281]

Metallic sodium. This metal is employed for the drying of ethers and of saturated and aromatic hydrocarbons. The bulk of the water should first be removed from the liquid or solution by a preliminary drying with anhydrous calcium chloride or magnesium sulphate. Sodium is most effective in the form of fine wire, which is forced directly into the liquid by means of a sodium press (see under Ether, Section II,47,i) a large surface is thus presented to the liquid. It cannot be used for any compound with which it reacts or which is affected by alkalis or is easily subject to reduction (due to the hydrogen evolved during the dehydration), viz., alcohols, acids, esters, organic halides, ketones, aldehydes, and some amines. [Pg.143]

Organic compounds normally cause Htde or no corrosion of magnesium. Tanks or other containers of magnesium alloys are used for phenol [108-95-2] methyl bromide [74-96 ] and phenylethyl alcohol [60-12-8]. Most alcohols cause no more than mild attack, but anhydrous methanol attacks magnesium vigorously with the formation of magnesium methoxide [109-88-6]. This attack is inhibited by the addition of 1% ammonium sulfide [12135-76-1] or the presence ofwater. [Pg.334]

Magnesium iodide is soluble in alcohols and many other organic solvents, and forms numerous addition compounds with alcohols, ethers, aldehydes, esters, and amines. One example is magnesium iodide dietherate [29964-67-8], Mgl2 prepared by gradual addition of iodine to a... [Pg.351]

The use of the perchlorate as desiccant in a drybag where contamination with organic compounds is possible is considered dangerous [1], Magnesium perchlorate ( Anhydrone ) was inadvertently used instead of calcium sulfate (anhydrite) to dry an unstated reaction product before vacuum distillation. The error was realised and all solid was filtered off. Towards the end of the distillation, decomposition and an explosion occurred, possibly owing to the presence of dissolved magnesium perchlorate, or more probably to perchloric acid present as impurity in the salt [2]. [Pg.1427]

In flame calorimetry, it is not easy to measure directly with good accuracy the mass of reactants consumed in the combustion. Therefore, the results are always based on the quantitative analysis of the products and the stoichiometry of the combustion process. In the case of reaction 7.73, the H20 produced was determined from the increase in mass of absorption tubes such as M, containing anhydrous magnesium perchlorate and phosphorus pentoxide [54,99], When organic compounds are studied by flame combustion calorimetry, the mass of C02 formed is also determined. As in bomb calorimetry, this is done by using absorption tubes containing Ascarite [54,90]. [Pg.115]


See other pages where Magnesium, organic compounds with is mentioned: [Pg.221]    [Pg.719]    [Pg.17]    [Pg.17]    [Pg.340]    [Pg.399]    [Pg.176]    [Pg.414]    [Pg.29]    [Pg.106]    [Pg.78]    [Pg.542]    [Pg.96]    [Pg.249]    [Pg.365]    [Pg.117]    [Pg.141]    [Pg.703]    [Pg.196]    [Pg.549]    [Pg.341]    [Pg.385]    [Pg.11]    [Pg.347]    [Pg.202]    [Pg.11]    [Pg.507]    [Pg.416]    [Pg.444]    [Pg.280]    [Pg.188]    [Pg.141]    [Pg.703]    [Pg.1336]    [Pg.409]    [Pg.1771]    [Pg.104]    [Pg.321]    [Pg.94]    [Pg.239]    [Pg.280]    [Pg.558]   
See also in sourсe #XX -- [ Pg.751 ]




SEARCH



Magnesium compounds

Magnesium organic compounds

With Organic Compounds

© 2024 chempedia.info