Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Macroscopic relaxation INDEX

Taylor et al. conducted DFT simulations using a periodic model of the interface between water and various metal surfaces with an index of (1 1 l).102 The chemistry of water at these charged interfaces was investigated and the parameters relevant to the macroscopic behavior of the interface, such as the capacitance and the potential of zero charge (PZC), were evaluated. They also examined the influence of co-adsorbed CO upon the equilibrium potential for the activation of water on Pt(l 1 1). They found that for copper and platinum there was a potential window over which water is inert. However, on Ni(l 1 1) surface water was always found in some dissociated form (i.e., adsorbed OH or H ). The relaxation of water... [Pg.357]

These difficulties have stimulated the development of defined model catalysts better suited for fundamental studies (Fig. 15.2). Single crystals are the most well-defined model systems, and studies of their structure and interaction with gas molecules have explained the elementary steps of catalytic reactions, including surface relaxation/reconstruction, adsorbate bonding, structure sensitivity, defect reactivity, surface dynamics, etc. [2, 5-7]. Single crystals were also modified by overlayers of oxides ( inverse catalysts ) [8], metals, alkali, and carbon (Fig. 15.2). However, macroscopic (cm size) single crystals cannot mimic catalyst properties that are related to nanosized metal particles. The structural difference between a single-crystal surface and supported metal nanoparticles ( 1-10 nm in diameter) is typically referred to as a materials gap. Provided that nanoparticles exhibit only low Miller index facets (such as the cuboctahedral particles in Fig. 15.1 and 15.2), and assuming that the support material is inert, one could assume that the catalytic properties of a... [Pg.320]


See other pages where Macroscopic relaxation INDEX is mentioned: [Pg.137]    [Pg.167]    [Pg.14]    [Pg.69]    [Pg.348]    [Pg.167]    [Pg.13]    [Pg.126]    [Pg.74]    [Pg.190]    [Pg.475]   
See also in sourсe #XX -- [ Pg.581 ]




SEARCH



Macroscopic relaxation

Relaxation index

© 2024 chempedia.info