Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Macromolecules species

Molecular Complexes. These species are formed by noncovalent interactions between the substrate and ligand. Among the kinds of complexspecies included in this class are small molecule-small molecule complexes, small molecule-macromolecule species, ion-pairs, dimers and other self-associated species, and inclusion complexes in which one ofthe molecules, the host, forms or possesses a cavity into which it can admit a guest molecule. [Pg.134]

In a solution containing a single macromolecule species that dominates the scattering, two physically distinct diffusion coefficients characterize translational diffusion. The two-particle or mutual diffusion coefficient Dm describes, via Tick s law. [Pg.73]

Since from an ideal point of view polymer solubility and adsorption are not occurring in this chromatographic process, the volume of eluent required for the elution of any macromolecules species must essentially be dependent on chain length and appears to be insensitive to structure (universal calibration). However, this seems to be not always the case (non-exclusion effects). [Pg.1807]

The advantages of this type of system are that the release rates are independent of the dmg properties, macromolecules and ionic species may be dehvered, fluxes may be high, and release rates are not dependent upon environmental conditions such as pH. The disadvantages are that the system is subject to dose-dumping if it is chewed. It is also more expensive to formulate than coating tablets, and there is a possibiUty of hole plugging. [Pg.232]

Intraparticle convection can also occur in packed beds when the adsorbent particles have very large and well-connected pores. Although, in general, bulk flow through the pores of the adsorbent particles is only a small frac tion of the total flow, intraparticle convection can affec t the transport of veiy slowly diffusing species such as macromolecules. The driving force for convec tion, in this case, is the... [Pg.1510]

The electric field-jump method is applicable to reactions of ions and dipoles. Application of a powerful electric field to a solution will favor the production of ions from a neutral species, and it will orient dipoles with the direction of the applied field. The method has been used to study metal ion complex formation, the binding of ions to macromolecules, and acid-base reactions. [Pg.144]

Interest in anionic polymerizations arises in part from the reactivity of the living carbanionic sites4 7) Access can be provided to polymers with a functional chain end. Such species are difficult to obtain by other methods. Polycondensations yield ro-functional polymers but they provide neither accurate molecular weight control nor low polydispersity. Recently Kennedy51) developed the inifer technique which is based upon selective transfer to fit vinylic polymers obtained cationically with functions at chain end. Also some cationic ring-opening polymerizations52) without spontaneous termination can yield re-functional polymers upon induced deactivation. Anionic polymerization remains however the most versatile and widely used method to synthesize tailor made re-functional macromolecules. [Pg.155]

The purpose of this review is to show how anionic polymerization techniques have successfully contributed to the synthesis of a great variety of tailor-made polymer species Homopolymers of controlled molecular weight, co-functional polymers including macromonomers, cyclic macromolecules, star-shaped polymers and model networks, block copolymers and graft copolymers. [Pg.170]

Molecularly motivated empiricisms, such as the solubility parameter concept, have been valuable in dealing with mixtures of weakly interacting small molecules where surface forces are small. However, they are completely inadequate for mixtures that involve macromolecules, associating entities like surfactants, and rod-like or plate-like species that can form ordered phases. New theories and models are needed to describe and understand these systems. This is an active research area where advances could lead to better understanding of the dynamics of polymers and colloids in solution, the rheological and mechanical properties of these solutions, and, more generally, the fluid mechaiucs of non-Newtonian liquids. [Pg.86]

Desiccation tolerant species may exhibit little or no metabolic activity depending upon the extent of dehydration. In this anhydrobiotic or ametabolic state we are concerned not with metabolic perturbation but with the stability of organelles, membranes and macromolecules in a dehydrated state. However, in the initial period of rehydration, the passage to a metabolically active state poses particular problems if metabolic mayhem is to be avoided. [Pg.115]

Another class of photochemically relevant polyphosphazenes is formed by macromolecules having chromophores able to absorb light in a selective way and to transfer it to external species, thus inducing different reactions by energy transfer processes. In some cases electron transfer processes are also involved. These situations are described by Formula below and the corresponding polymers and external reagents are reported in Table 26. [Pg.224]

The core of reversed micelles can be transformed to a highly viscous domain (nanogel) by entrapping appropriate species, such as viscous solvents and hydrophilic macromolecules, or by performing in situ appropriate polymerization reactions or intramolecular cross-linking of water-soluble polymer chains [232-234]. [Pg.493]

Nanogels made up of various intramolecularly cross-linked macromolecules have been prepared simply by performing the polymerization of hydrophilic monomers solubilized in the micellar core of reversed micelles, and they represent distinct macromolecular species from those obtained in bulk [191,240]. [Pg.494]

The first is cell injury (cytotoxicity), which can be severe enough to result in cell death. There are many mechanisms by which xenobiotics injure cells. The one considered here is covalent binding to cell macromol-ecules of reactive species of xenobiotics produced by metabolism. These macromolecular targets include DNA, RNA, and protein. If the macromolecule to which the reactive xenobiotic binds is essential for short-term cell survival, eg, a protein or enzyme involved in some critical cellular function such as oxidative phosphorylation or regulation of the permeability of the plasma membrane, then severe effects on cellular function could become evident quite rapidly. [Pg.631]


See other pages where Macromolecules species is mentioned: [Pg.192]    [Pg.431]    [Pg.307]    [Pg.74]    [Pg.192]    [Pg.431]    [Pg.307]    [Pg.74]    [Pg.381]    [Pg.236]    [Pg.240]    [Pg.240]    [Pg.387]    [Pg.2038]    [Pg.24]    [Pg.500]    [Pg.500]    [Pg.501]    [Pg.282]    [Pg.285]    [Pg.230]    [Pg.504]    [Pg.123]    [Pg.159]    [Pg.182]    [Pg.224]    [Pg.389]    [Pg.159]    [Pg.43]    [Pg.4]    [Pg.142]    [Pg.120]    [Pg.125]    [Pg.146]    [Pg.116]    [Pg.130]    [Pg.217]    [Pg.355]    [Pg.507]    [Pg.1429]    [Pg.40]   


SEARCH



© 2024 chempedia.info