Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lysine residues modification

Histone acetylation is a reversible and covalent modification of histone proteins introduced at the e-amino groups of lysine residues. Histones and DNA form a complex - chromatin - which condenses DNA and controls gene activity. Current models interpret histone acetylation as a means to regulate chromatin activity. [Pg.592]

Histone Acetylation. Figure 1 Histone acetylation is a posttranslational modification of lysine residues of histones. This modification is catalyzed by histone actyl transferases (HATs), which transfer an acetyl group (yellow) from acetyl-Coenzyme A onto the E-amino group of the lysine residue. Histone deacetylation is catalyzed by histone deacetylases (HDACs), which hydrolyze the lysine bound acetyl group. HDAC inhibitors like Trichostatin A (TSA) are known to inhibit the deacetylation reaction in vivo and in vitro. [Pg.593]

The exact role of individual histone acetylations will have to be determined in the context of other modifications and the number of lysine residues effected. However, the general importance of histone acetylation as a regulator for chromatin activity is undisputed. This leads to the intriguing possibility to develop drugs that target histone acetylation for therapeutic purposes. The primary targets for drug development are the histone acetyl transferases (HATs) and the histone deacetylases (HDACs) which introduce and remove histone acetylations [2, 3]. [Pg.594]

Small tfbiquitin-like modifier represents a family of evolutionary conserved proteins that are distantly related in amino-acid sequence to ubiquitin, but share the same structural folding with ubiquitin proteins. SUMO proteins are covalently conjugated to protein substrates by an isopeptide bond through their carboxyl termini. SUMO addition to lysine residues of target proteins, termed SUMOylation, mediates post-transla-tional modification and requires a set of enzymes that are distinct from those that act on ubiquitin. SUMOylation regulates the activity of a variety of tar get proteins including transcription factors. [Pg.1162]

Ubiquitin/Proteasome. Figure 2 Functional consequences of ubiquitin linkage. Substrates (blue bars) are linked via lysine residues (K) to ubiquitin or ubiquitin chains, (a) Attachment of chains connected via Lysines in position 48 of ubiquitin (K48) targets substrates for proteasomal degradation. In contrast modification of one (b) or multiple (c) lysines by a single ubiquitin molecule mediates novel protein interactions or initiates endocytosis. Conjugation of K63-linked polyubiquitin (d) alters protein function and can also serve as a signal for endocytosis. [Pg.1264]

The participation of other lysine residues in ATP hydrolysis is suggested by the inhibition of various partial reactions of Ca transport after modification of -... [Pg.93]

The reactions described so far do not require the involvement of the apo-B protein, neither would they necessarily result in a significant amount of protein modification. However, the peroxyl radical can attack the fatty acid to which it is attached to cause scission of the chain with the concomitant formation of aldehydes such as malondialdehyde and 4-hydroxynonenal (Esterbauer et al., 1991). Indeed, complex mixtures of aldehydes have been detected during the oxidation of LDL and it is clear that they are capable of reacting with lysine residues on the surface of the apo-B molecule to convert the molecule to a ligand for the scavenger receptor (Haberland etal., 1984 Steinbrecher et al., 1989). In addition, the lipid-derived radical may react directly with the protein to cause fragmentation and modification of amino acids. [Pg.30]

Mir MM, Fazili KM, Abul Qasim M. Chemical modification of buried lysine residues of bovine serum albumin and its influence on protein conformation and bilirubin binding. Biochim. Biophys. Acta 1992 1119 261-267. [Pg.321]

Pathy, L., and Smith, E.L. (1975) Reversible modification of arginine residues Application to sequence studies by restriction of tryptic hydrolysis to lysine residues./. Biol. Chem. 250, 557. [Pg.1102]

Shetty, J.K., and Kinsella, J.E. (1980) Ready separation of proteins from nucleoprotein complexes by reversible modification of lysine residues. Biochem. J. 191, 269-272. [Pg.1113]

The reaction of HOC1 with LDL results in apoB modification with little oxidation of lipids by attacking amino groups of apoB lysine residues and the formation of /V-chloramincs, with the latter as the major products of HOC1 reaction with LDL ... [Pg.796]

One of the most-studied covalent modifications is the acetylation of the lysine residues of histone tails. The acetylation state of lysines of nucleosomal histones modulates chromatin structure and regulates gene transcriptional activity. The balance of lysine acetylation is controlled by the antagonistic action of two enzyme families histone deacetylases (HDACs) and histone acetyltransferases (HATs). In humans there are essentially three main HDAC subclasses [6]. [Pg.337]

In 1979, Ross et al 22i" measured the ODMR of tyrosine in glucagon and the derivative [12-homoarginine]glucagon to examine the effect of chemical modification of a lysine residue adjacent to Tyr-10 and Tyr-13. The guanidinated analogue had lower potency than glucagon in a fat cell hormone receptor assay. Since the tyrosine ODMR and other spectral properties of the polypeptide, including circular dichroism, were essentially identical, it was... [Pg.51]


See other pages where Lysine residues modification is mentioned: [Pg.87]    [Pg.87]    [Pg.108]    [Pg.539]    [Pg.593]    [Pg.1026]    [Pg.1166]    [Pg.1166]    [Pg.1228]    [Pg.1263]    [Pg.166]    [Pg.383]    [Pg.537]    [Pg.175]    [Pg.93]    [Pg.40]    [Pg.102]    [Pg.44]    [Pg.93]    [Pg.97]    [Pg.27]    [Pg.248]    [Pg.250]    [Pg.332]    [Pg.452]    [Pg.109]    [Pg.119]    [Pg.183]    [Pg.753]    [Pg.900]    [Pg.825]    [Pg.103]    [Pg.107]    [Pg.283]    [Pg.549]    [Pg.287]    [Pg.292]    [Pg.45]   
See also in sourсe #XX -- [ Pg.678 , Pg.679 , Pg.680 , Pg.681 , Pg.696 , Pg.698 , Pg.801 ]

See also in sourсe #XX -- [ Pg.21 , Pg.37 ]

See also in sourсe #XX -- [ Pg.261 , Pg.343 , Pg.344 , Pg.345 , Pg.362 , Pg.365 ]




SEARCH



Lysine modification

Lysine residues

© 2024 chempedia.info