Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lysine mechanism

Perryman MB, KneU JD, Roberts R. Carboxypepti-dase-catalyzed hydrolysis of C-terrainal lysine Mechanism for in vivo production of multiple CK forms in plasma. Clin Chem 1985 30 662-5. [Pg.1668]

M. Perryman, D. Knell, and R. Roberts. Carboxypeptidase-catalyzed hydrolysis of C-terminal lysine mechanism for in vivo production of multiple forms of creatine kinase in plasma. Clin. Chem. 30 662-664 (1984). [Pg.102]

Figure 4.9 Mechanisms of the reactions catalyzed by the enzymes mandelate racemase (a) and muconate lactonizing enzyme (b). The two overall reactions are quite different a change of configuration of a carbon atom for mandelate racemase versus ring closure for the lactonizing enzyme. However, one crucial step (red) in the two reactions is the same addition of a proton (blue) to an intermediate of the substrate (red) from a lysine residue of the enzyme (E) or. In the reverse direction, formation of an intermediate by proton abstraction from the carbon atom adjacent to the carboxylate group. Figure 4.9 Mechanisms of the reactions catalyzed by the enzymes mandelate racemase (a) and muconate lactonizing enzyme (b). The two overall reactions are quite different a change of configuration of a carbon atom for mandelate racemase versus ring closure for the lactonizing enzyme. However, one crucial step (red) in the two reactions is the same addition of a proton (blue) to an intermediate of the substrate (red) from a lysine residue of the enzyme (E) or. In the reverse direction, formation of an intermediate by proton abstraction from the carbon atom adjacent to the carboxylate group.
FIGURE 19.13 (a) A mechanism for the fructose-l,6-bisphosphate aldolase reaction. The Schlff base formed between the substrate carbonyl and an active-site lysine acts as an electron sink, Increasing the acidity of the /3-hydroxyl group and facilitating cleavage as shown. (B) In class II aldolases, an active-site Zn stabilizes the enolate Intermediate, leading to polarization of the substrate carbonyl group. [Pg.621]

These observations are explained by the mechanism shown in the figure. NaBH4 inactivates Class I aldolases by transfer of a hydride ion (H ) to the imine carbon atom of the enzyme-substrate adduct. The resulting secondary amine is stable to hydrolysis, and the active-site lysine is thus permanently modified and inactivated. NaBH4 inactivates Class I aldolases in the presence of either dihydroxyacetone-P or fructose-1,6-bisP, but inhibition doesn t occur in the presence of glyceraldehyde-3-P. [Pg.622]

Chlorophyll, heme, vitamin B,2, and a host of other substances are bio-synthesized from porphobilinogen (PEG), which is itself formed from condensation of two molecules of 5-aminolevulinate. The two 5-aminolevulinates are bound to lysine (Lys) amino acids in the enzyme, one in the enamine form and one in the imine form, and their condensation is thought to occur by the following steps. Using curved arrows, show the mechanism of each step. [Pg.966]

The first step in the biological degradation of lysine is reductive animation with a-ketoglutarate to give saccharopine. Nicotinamide adenine dinucleotide phosphate (NADPH), a relative of NADH, is the reducing agent. Show the mechanism. [Pg.1059]

The mechanism of the first part of transamination is shown in Figure 29.14. The process begins with reaction between the a-amino acid and pyridoxal phosphate, which is covalently bonded to the aminotransferase by an iminc linkage between the side-chain -NTI2 group of a lysine residue and the PLP aldehyde group. Deprotonation/reprotonation of the PLP-amino acid imine in steps 2 and 3 effects tautomerization of the imine C=N bond, and hydrolysis of the tautomerized imine in step 4 gives an -keto acid plus pyridoxamine... [Pg.1166]

Figure 2. Mechanism of PDH. The three different subunits of the PDH complex in the mitochondrial matrix (E, pyruvate decarboxylase E2, dihydrolipoamide acyltrans-ferase Ej, dihydrolipoamide dehydrogenase) catalyze the oxidative decarboxylation of pyruvate to acetyl-CoA and CO2. E, decarboxylates pyruvate and transfers the acetyl-group to lipoamide. Lipoamide is linked to the group of a lysine residue to E2 to form a flexible chain which rotates between the active sites of E, E2, and E3. E2 then transfers the acetyl-group from lipoamide to CoASH leaving the lipoamide in the reduced form. This in turn is oxidized by E3, which is an NAD-dependent (low potential) flavoprotein, completing the catalytic cycle. PDH activity is controlled in two ways by product inhibition by NADH and acetyl-CoA formed from pyruvate (or by P-oxidation), and by inactivation by phosphorylation of Ej by a specific ATP-de-pendent protein kinase associated with the complex, or activation by dephosphorylation by a specific phosphoprotein phosphatase. The phosphatase is activated by increases in the concentration of Ca in the matrix. The combination of insulin with its cell surface receptor activates PDH by activating the phosphatase by an unknown mechanism. Figure 2. Mechanism of PDH. The three different subunits of the PDH complex in the mitochondrial matrix (E, pyruvate decarboxylase E2, dihydrolipoamide acyltrans-ferase Ej, dihydrolipoamide dehydrogenase) catalyze the oxidative decarboxylation of pyruvate to acetyl-CoA and CO2. E, decarboxylates pyruvate and transfers the acetyl-group to lipoamide. Lipoamide is linked to the group of a lysine residue to E2 to form a flexible chain which rotates between the active sites of E, E2, and E3. E2 then transfers the acetyl-group from lipoamide to CoASH leaving the lipoamide in the reduced form. This in turn is oxidized by E3, which is an NAD-dependent (low potential) flavoprotein, completing the catalytic cycle. PDH activity is controlled in two ways by product inhibition by NADH and acetyl-CoA formed from pyruvate (or by P-oxidation), and by inactivation by phosphorylation of Ej by a specific ATP-de-pendent protein kinase associated with the complex, or activation by dephosphorylation by a specific phosphoprotein phosphatase. The phosphatase is activated by increases in the concentration of Ca in the matrix. The combination of insulin with its cell surface receptor activates PDH by activating the phosphatase by an unknown mechanism.
A number of iron-containing, ascorbate-requiring hydroxylases share a common reaction mechanism in which hydroxylation of the substrate is linked to decarboxylation of a-ketoglutarate (Figure 28-11). Many of these enzymes are involved in the modification of precursor proteins. Proline and lysine hydroxylases are required for the postsynthetic modification of procollagen to collagen, and prohne hydroxylase is also required in formation of osteocalcin and the Clq component of complement. Aspartate P-hydroxylase is required for the postsynthetic modification of the precursor of protein C, the vitamin K-dependent protease which hydrolyzes activated factor V in the blood clotting cascade. TrimethyUysine and y-butyrobetaine hydroxylases are required for the synthesis of carnitine. [Pg.496]

ENZYME MECHANISM AND CATALYSIS OF HISTONE LYSINE METHYLATION [49,50]... [Pg.345]

With the characterized mechanism, the next key question is the origin of its catalytic power. A prerequisite for this investigation is to reliably compute free energy barriers for both enzyme and solution reactions. By employing on-the-fly Born-Oppenheimer molecular dynamics simulations with the ab initio QM/MM approach and the umbrella sampling method, we have determined free energy profiles for the methyl-transfer reaction catalyzed by the histone lysine methyltransferase SET7/9... [Pg.346]


See other pages where Lysine mechanism is mentioned: [Pg.137]    [Pg.137]    [Pg.1171]    [Pg.44]    [Pg.177]    [Pg.322]    [Pg.172]    [Pg.1171]    [Pg.805]    [Pg.1168]    [Pg.1175]    [Pg.339]    [Pg.978]    [Pg.1082]    [Pg.1263]    [Pg.1034]    [Pg.483]    [Pg.103]    [Pg.232]    [Pg.232]    [Pg.91]    [Pg.92]    [Pg.107]    [Pg.156]    [Pg.438]    [Pg.363]    [Pg.383]    [Pg.308]    [Pg.102]    [Pg.166]    [Pg.151]    [Pg.234]    [Pg.40]    [Pg.359]    [Pg.238]    [Pg.275]    [Pg.341]    [Pg.342]    [Pg.346]    [Pg.347]   
See also in sourсe #XX -- [ Pg.371 ]




SEARCH



Enzyme Mechanism and Catalysis of Histone Lysine Methylation

© 2024 chempedia.info