Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Luminescence principles state

Principles and Characteristics The term luminescence describes the radiative evolution of energy other than blackbody radiation which may accompany the decay of a population of electronically excited chro-mophores as it relaxes to that of the thermally equilibrated ground state of the system. The frequency of the... [Pg.318]

Fig. 21. Top The general Jablonski diagram for the flavin chromophore. The given wavelengths for absorption and luminescence represent crude average values derived from the actual spectra shown below. Due to the Franck-Condon principle the maxima of the peak positions generally do not represent so-called 0 — 0 transitions, but transitions between vibrational sublevels of the different electronically excited states (drawn schematically). Bottom Synopsis of spectra representing the different electronic transitions of the flavin nucleus. Differently substituted flavins show slightly modified spectra. Absorption (So- - S2, 345 nm S0 -> Si,450nm 1561) fluorescence (Sj — S0) 530 nm 156)) phosphorescence (Ty Sq, 605 nm 1051) triplet absorption (Tj ->Tn,... Fig. 21. Top The general Jablonski diagram for the flavin chromophore. The given wavelengths for absorption and luminescence represent crude average values derived from the actual spectra shown below. Due to the Franck-Condon principle the maxima of the peak positions generally do not represent so-called 0 — 0 transitions, but transitions between vibrational sublevels of the different electronically excited states (drawn schematically). Bottom Synopsis of spectra representing the different electronic transitions of the flavin nucleus. Differently substituted flavins show slightly modified spectra. Absorption (So- - S2, 345 nm S0 -> Si,450nm 1561) fluorescence (Sj — S0) 530 nm 156)) phosphorescence (Ty Sq, 605 nm 1051) triplet absorption (Tj ->Tn,...
Figure 2. Principles of reversible luminescence sensing using photochemical quenching processes (electron, energy or proton transfer). Dye = luminescent indicator Q = quencher species dotted arrow non-radiative deactivation processes. The luminescence intensity (and excited state lifetime) of the indicator dye decreases in the presence of the quencher. The indicator dye is typically supported onto a polymer material in contact with the sample. The quencher may he the analyte itself or a third partner species that interacts with the analyte (see text). Figure 2. Principles of reversible luminescence sensing using photochemical quenching processes (electron, energy or proton transfer). Dye = luminescent indicator Q = quencher species dotted arrow non-radiative deactivation processes. The luminescence intensity (and excited state lifetime) of the indicator dye decreases in the presence of the quencher. The indicator dye is typically supported onto a polymer material in contact with the sample. The quencher may he the analyte itself or a third partner species that interacts with the analyte (see text).
Molecular emission is referred to as luminescence or fluorescence and sometimes phosphorescence. While atomic emission is generally instantaneous on a time scale that is sub-picoseconds, molecular emission can involve excited states with finite, lifetimes on the order of nanoseconds to seconds. Similar molecules can have quite different excited state lifetimes and thus it should be possible to use both emission wavelength and emission apparent lifetime to characterize molecules. The instrumental requirements will be different from measurements of emission, only in detail but not in principles, shared by all emission techniques. [Pg.255]

The behavior of practically all luminescent materials is sensitive to various parameters of physical and chemical origin. The excited state lifetimes and average intensities of the fluorescence and/or phosphorescence of these materials are modulated, for example, by temperature, oxygen, pH, carbon dioxide, voltage, pressure, and ionic strength. Consequently, the luminescence of various materials could be used, in principle, to monitor parameters of interest in medicine, industry, research, and the environment. [Pg.255]

In principle, the neutral desorbed products of dissociation can be detected and mass analyzed, if ionized prior to their introduction into the mass spectrometer. However, such experiments are difficult due to low ejfective ionization efficiencies for desorbed neutrals. Nevertheless, a number of systems have been studied in the groups of Wurm et al. [45], Kimmel et al. [46,47], and Harries et al. [48], for example. In our laboratory, studies of neutral particle desorption have been concentrated on self-assembled monolayer targets at room temperature [27,28]. Under certain circumstances, neutrals desorbed in electronically excited metastable states of sufficient energy can be detected by their de-excitation at the surface of a large-area microchannel plate/detector assembly [49]. Separation of the BSD signal of metastables from UV luminescence can be effected by time of flight analysis [49] however, when the photon signal is small relative to the metastable yield, such discrimination is unnecessary and only the total yield of neutral particles (NP) needs to be measured. [Pg.214]

In principle such upward or downward transitions can take place between any two energy states. The absorption spectrum of an atom consists of very sharp lines, the frequencies of which correspond to the difference of energies between the two states, E2 — Ex = hv. Similarly the luminescence spectrum of an atom consists of sharp emission lines of the same frequency. Figure 3.3 gives a simple picture of the energy states of an atom and of the transitions which can be observed in the absorption and emission spectra. The... [Pg.29]

Luminescence spectra resulting from pure vibrational or V-R transitions involving excited-product states formed in ion-neutral collisions have not yet been observed. However, vibrational and rotational excitation of the products of reactive ion-neutral collisions may be determined indirectly from measurements of Q, the translational exoergicity, which is defined as the difference between the translational energy of the products and that of the reactants. According to the energy-conservation principle, then,... [Pg.163]

The formation of these ternary luminescent lanthanide complexes was the result of displacement of the two labile metal-bound water molecules, which was necessary because the energy transfer process between the antenna and the Ln(III) metal centre is distance-dependent. This ternary complex formation was confirmed by analysis of the emission lifetimes in the presence of DMABA and showed the water molecules were displaced by a change in the hydration state q from 2 to 0, with binding constants of log fCa = 5.0. The Eu(III) complexes were not modulated in either water or buffered solutions at pH 7.4. Lifetime analysis of these complexes showed that the metal-bound water molecules had not been displaced and that the ternary complex was not formed. Of greater significance, both Tb -27 and Tb -28 could selectively detect salicylic acid while aspirin was not detected in buffered solutions at pH 7.4, using the principle as discussed for DMABA where excitation of the binding antenna resulted in a luminescent emission upon coordination of salicylic acid to the complex. [Pg.22]

In the sections which follow, the principles discussed above will be used in exploring the properties of a range of platinum(II) complexes. The emphasis of the chapter will be on emission—luminescence—from Pt(II) complexes, on the features and properties of molecules that tend to favor emission over other non-radiative processes. In other words, photophysics, as opposed to photochemistry, is our main subject here, but we also consider other excited state processes in selected systems, such as electron transfer and photooxidation. [Pg.212]

Figure 5.4, one can easily understand why the interfacial electron transfer should take place in the 10-100 fsec range because this ET process should be faster than the photo-luminescence of the dye molecules and energy transfer between the molecules. Recently Zimmermann et al. [58] have employed the 20 fsec laser pulses to study the ET dynamics in the DTB-Pe/TiC>2 system and for comparison, they have also studied the excited-state dynamics of free perylene in toluene solution. Limited by the 20 fsec pulse-duration, from the uncertainty principle, they can only observe the vibrational coherences (i.e., vibrational wave packets) of low-frequency modes (see Figure 5.5). Six significant modes, 275, 360, 420, 460, 500 and 625 cm-1, have been resolved from the Fourier transform spectra of ultrashort pulse measurements. The Fourier transform spectrum has also been compared with the Raman spectrum. A good agreement can be seen (Figure 5.5). For detail of the analysis of the quantum beat, refer to Figures 5.5-5.7 of Zimmermann et al. s paper [58], These modes should play an important role not only in ET dynamics or excited-state dynamics, but also in absorption spectra. Therefore, the steady state absorption spectra of DTB-Pe, both in... Figure 5.4, one can easily understand why the interfacial electron transfer should take place in the 10-100 fsec range because this ET process should be faster than the photo-luminescence of the dye molecules and energy transfer between the molecules. Recently Zimmermann et al. [58] have employed the 20 fsec laser pulses to study the ET dynamics in the DTB-Pe/TiC>2 system and for comparison, they have also studied the excited-state dynamics of free perylene in toluene solution. Limited by the 20 fsec pulse-duration, from the uncertainty principle, they can only observe the vibrational coherences (i.e., vibrational wave packets) of low-frequency modes (see Figure 5.5). Six significant modes, 275, 360, 420, 460, 500 and 625 cm-1, have been resolved from the Fourier transform spectra of ultrashort pulse measurements. The Fourier transform spectrum has also been compared with the Raman spectrum. A good agreement can be seen (Figure 5.5). For detail of the analysis of the quantum beat, refer to Figures 5.5-5.7 of Zimmermann et al. s paper [58], These modes should play an important role not only in ET dynamics or excited-state dynamics, but also in absorption spectra. Therefore, the steady state absorption spectra of DTB-Pe, both in...
Excitation of the Lnm ion by a d-transition metal ion is an alternative to chromophore-substituted ligands, and proof of principle has been demonstrated for several systems. The lack of quantitative data, however does not allow an evaluation of their real potential, except for their main advantage, which is the control of the luminescent properties of the 4f-metal ion by directional energy transfer. In this context, we note the emergence of self-assembly processes to build new edifices, particularly bi-metallic edifices, by the simultaneous recognition of two metal ions. This relatively unexplored area has already resulted in the design of edifices in which the rate of population, and therefore the apparent lifetime, of a 4f-excited state can be fine-tuned by energy transfer from a d-transition metal ion (Torelli et al., 2005). [Pg.455]


See other pages where Luminescence principles state is mentioned: [Pg.8]    [Pg.148]    [Pg.285]    [Pg.1]    [Pg.697]    [Pg.707]    [Pg.923]    [Pg.941]    [Pg.60]    [Pg.111]    [Pg.140]    [Pg.191]    [Pg.182]    [Pg.26]    [Pg.138]    [Pg.5]    [Pg.25]    [Pg.31]    [Pg.37]    [Pg.42]    [Pg.45]    [Pg.492]    [Pg.33]    [Pg.42]    [Pg.433]    [Pg.65]    [Pg.84]    [Pg.199]    [Pg.304]    [Pg.305]    [Pg.8]    [Pg.226]    [Pg.581]    [Pg.38]    [Pg.102]    [Pg.165]    [Pg.221]    [Pg.238]    [Pg.422]   
See also in sourсe #XX -- [ Pg.2 ]




SEARCH



Luminescence principles

Luminescent state

© 2024 chempedia.info