Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Low Coverages

If adsorption occurs via a physisorbed precursor, then the sticking probability at low coverages will be enhanced due to the ability of the precursor to diflfiise and find a lattice site [30]. The details depend on parameters such as strength of the lateral interactions between the adsorbates and the relative rates of desorption and reaction of the precursor. In figure Al.7,8 an example of a plot of S versus 0 for precursor mediated adsorption is presented. [Pg.298]

There are interactions between the adsorbates themselves, which greatly affect the structure of the adsorbates [32]. If surface difhision is sufficiently facile during or following the adsorption step, attractive interactions can induce the adsorbates to fomi islands in which the local adsorbate concentration is quite high. Other adsorbates may repel each other at low coverages fomiing structures in which the distance between adsorbates... [Pg.298]

Figure Bl.22.2. RAIRS data from molecular ethyl bromide adsorbed on a Pt(l 11) surface at 100 K. The two traces shown, which correspond to coverages of 20% and 100% saturation, illustrate the use of the RAIRS surface selection nde for the detemiination of adsorption geometries. Only one peak, but a different one, is observed in each case while the signal detected at low coverages is due to the asymmetric defomiation of the... Figure Bl.22.2. RAIRS data from molecular ethyl bromide adsorbed on a Pt(l 11) surface at 100 K. The two traces shown, which correspond to coverages of 20% and 100% saturation, illustrate the use of the RAIRS surface selection nde for the detemiination of adsorption geometries. Only one peak, but a different one, is observed in each case while the signal detected at low coverages is due to the asymmetric defomiation of the...
FiaaHy, the Ogp term is the contribution resulting from iateractions between adsorbate molecules. At low coverages of the adsorbent by adsorbate molecules, this contribution approaches zero, and at high coverage it often causes a noticeable iacrease ia the heat of adsorption. [Pg.270]

The fluidfoil impellers in large tanks require only two baffles, but three are usually used to provide better flow pattern asymmetiy. These fluidfoil impellers provide a true axial flow pattern, almost as though there was a draft tube around the impeller. Two or three or more impellers are used if tanks with high D/T ratios are involved. The fluidfoil impellers do not vortex vigorously even at relatively low coverage so that if gases or solids are to Be incorporated at the surface, the axial-flow turbine is often required and can be used in combination with the fluidfoil impellers also on the same shaft. [Pg.1631]

The low-coverage parts of the adsorption isotherms evaluated at different temperatures have shown a remarkable feature of linear dependence between the adsorption and the logarithm of gas pressure. This sort of behavior corresponds to the well-known Temkin equation of adsorption... [Pg.256]

Note that if sticking is controled by site-exclusion only, i.e., if S 6,T) = 5 o(P)(l — 0), this rate is that of a first-order reaction at low coverage. This simple picture breaks down when either the sticking coefficient depends dilferently on the coverage, as it does for instance for precursor-mediated adsorption, or when lateral interactions become important. It then does not make much physical sense to talk about the order of the desorption process. [Pg.445]

A very similar effect of the surface concentration on the conformation of adsorbed macromolecules was observed by Cohen Stuart et al. [25] who studied the diffusion of the polystyrene latex particles in aqueous solutions of PEO by photon-correlation spectroscopy. The thickness of the hydrodynamic layer 8 (nm) calculated from the loss of the particle diffusivity was low at low coverage but showed a steep increase as the adsorbed amount exceeded a certain threshold. Concretely, 8 increased from 40 to 170 nm when the surface concentration of PEO rose from 1.0 to 1.5 mg/m2. This character of the dependence is consistent with the calculations made by the authors [25] according to the theory developed by Scheutjens and Fleer [10,12] which predicts a similar variation of the hydrodynamic layer thickness of adsorbed polymer with coverage. The dominant contribution to this thickness comes from long tails which extend far into the solution. [Pg.141]

It is desirable that the oxide chosen for an adsorption study has a high surface area. This would potentially allow a greater number of adsorbate molecules to be adsorbed and consequently more intense spectra would be obtained. In general, the observed spectra of adsorbed molecules at low coverages are weak. Further, some adsorbates (e.g. H2O) give rise to inherently weak Raman spectra even at high coverage. [Pg.327]

On the basis of the dipole moment, Paik, values computed from the Helmholtz equation (2.21) and the alkali ion radius one can estimate the effective positive charge, q, on the alkali adatom, provided its coordination on the surface is known. Such calculations give q values between 0.4 and 0.9 e (e.g. 0.86e for K on Pt(lll) at low coverages) which indicate that even at very low coverages the alkali adatoms are not fully ionized.6 This is confirmed by rigorous quantum mechanical calculations.27,28... [Pg.27]

The effect of electronegative additives on the adsorption of ethylene on transition metal surfaces is similar to the effect of S or C adatoms on the adsorption of other unsaturated hydrocarbons.6 For example the addition of C or S atoms on Mo(100) inhibits the complete decomposition (dehydrogenation) of butadiene and butene, which are almost completely decomposed on the clean surface.108 Steric hindrance plays the main role in certain cases, i.e the addition of the electronegative adatoms results in blocking of the sites available for hydrocarbon adsorption. The same effect has been observed for saturated hydrocarbons.108,109 Overall, however, and at least for low coverages where geometric hindrance plays a limited role, electronegative promoters stabilize the adsorption of ethylene and other unsaturated and saturated hydrocarbons on metal surfaces. [Pg.70]

Rule P3 If a catalyst surface has very low coverages of both electron acceptor and electron donor adsorbates then both an electron acceptor and electron donor promoter will enhance the rate. [Pg.298]


See other pages where Low Coverages is mentioned: [Pg.305]    [Pg.650]    [Pg.298]    [Pg.930]    [Pg.1783]    [Pg.1890]    [Pg.2222]    [Pg.2750]    [Pg.314]    [Pg.405]    [Pg.126]    [Pg.275]    [Pg.178]    [Pg.247]    [Pg.259]    [Pg.452]    [Pg.1211]    [Pg.1212]    [Pg.329]    [Pg.333]    [Pg.334]    [Pg.349]    [Pg.351]    [Pg.387]    [Pg.55]    [Pg.133]    [Pg.34]    [Pg.172]    [Pg.300]    [Pg.317]    [Pg.166]    [Pg.199]    [Pg.115]    [Pg.117]    [Pg.29]    [Pg.29]    [Pg.77]    [Pg.205]    [Pg.53]   
See also in sourсe #XX -- [ Pg.13 , Pg.56 , Pg.61 , Pg.184 , Pg.197 ]




SEARCH



Adsorption at Low Coverage Henrys Law

At low surface coverage

Heat of Adsorption at Low Coverage

Large-amplitude potential step low coverage

Low oxygen coverage

© 2024 chempedia.info