Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lorentz oscillator model

The microscopic characteristics of a real adsorbate layer have been considered [33, 34] by separating the x, y and z components of the electric field at the interface (Fig.4), and applying the Lorentz oscillator model to microscopically represent the adsorbate in the three-layer model. For the case of external reflection at a vacuum/semi-conducting, where Ss is real (no absorption) and isotropic, we can write ... [Pg.525]

We would like to emphasize that the photon statistics we consider is classical, while the Bloch equation describing dynamics of the SM has quantum mechanical elements in it (i.e., the coherence). In the weak laser intensity case, the Bloch equation approach allows a classical interpretation based on the Lorentz oscillator model as presented in Appendix B.3. [Pg.210]

In Appendix B, we find expressions for the photon current using the perturbation expansion. In Section B.3, we use the Lorentz oscillator model to derive similar results based on a classical picture. [Pg.250]

The stochastic Bloch equation is a semiphenomenological equation with some elements of quantum mechanics in it. To understand better whether our results are quantum mechanical in origin, we analyze a classical model. Lorentz invented the theory of classical, linear interaction of light with matter. Here, we investigate a stochastic Lorentz oscillator model. We follow Allen and Eberley [108] who considered the deterministic model in detail. The classical model is also helpful because its physical interpretation is clear. We show that for weak laser intensity, the stochastic Bloch equations are equivalent to classical Lorentz approach. [Pg.253]

The Lorentz oscillator model is a classical model which is usually used to describe the dispersion relation of semiconductor and crystalline materials. [6, 7, 67, 68] On the basis of this model, the dielectric function is usually expressed as... [Pg.59]

Another model for optical functions of amorphous materials is Tauc-Lorentz (T-L) model which is first proposed by G. E. JeUison et al. in 19% [68]. The parameterization is obtained as a combination of Tauc expression and Lorentz oscillator model for 2 of a collection of non-interacting atoms, and 2(8) is given by... [Pg.61]

Djurisic, AJ5. and Li, E.H. (1998) Modeling the index of refraction of insulating solids with a modified Lorentz oscillator model. Appl Optics, 37,5291-5297. [Pg.1050]

In order to illustrate some of the basic aspects of the nonlinear optical response of materials, we first discuss the anliannonic oscillator model. This treatment may be viewed as the extension of the classical Lorentz model of the response of an atom or molecule to include nonlinear effects. In such models, the medium is treated as a collection of electrons bound about ion cores. Under the influence of the electric field associated with an optical wave, the ion cores move in the direction of the applied field, while the electrons are displaced in the opposite direction. These motions induce an oscillating dipole moment, which then couples back to the radiation fields. Since the ions are significantly more massive than the electrons, their motion is of secondary importance for optical frequencies and is neglected. [Pg.1266]

While the Lorentz model only allows for a restoring force that is linear in the displacement of an electron from its equilibrium position, the anliannonic oscillator model includes the more general case of a force that varies in a nonlinear fashion with displacement. This is relevant when tire displacement of the electron becomes significant under strong drivmg fields, the regime of nonlinear optics. Treating this problem in one dimension, we may write an appropriate classical equation of motion for the displacement, v, of the electron from equilibrium as... [Pg.1266]

We now want to study the consequences of such a model with respect to the optical properties of a composite medium. For such a purpose, we will consider the phenomenological Lorentz-Drude model, based on the classical dispersion theory, in order to describe qualitatively the various components [20]. Therefore, a Drude term defined by the plasma frequency and scattering rate, will describe the optical response of the bulk metal or will define the intrinsic metallic properties (i.e., Zm((a) in Eq.(6)) of the small particles, while a harmonic Lorentz oscillator, defined by the resonance frequency, the damping and the mode strength parameters, will describe the insulating host (i.e., /((0) in Eq.(6)). [Pg.97]

Let us now check the validity of the simple Lorentz model in order to explain the spectra of real solids. Figure 4.2 shows the dependence of the reflectivity on photon energy for a typical semiconductor. Si (Figure 4.2(a)), and for a typical insulator, KCl (Figure 4.2(b)). The Lorentz oscillator cannot quantitatively explain both spectra. In fact, we have supposed a single resonance frequency >o, but in the most general case a... [Pg.121]

Electrons in metals at the top of the energy distribution (near the Fermi level) can be excited into other energy and momentum states by photons with very small energies thus, they are essentially free electrons. The optical response of a collection of free electrons can be obtained from the Lorentz harmonic oscillator model by simply clipping the springs, that is, by setting the spring constant K in (9.3) equal to zero. Therefore, it follows from (9.7) with co0 = 0 that the dielectric function for free electrons is... [Pg.252]

The return to equilibrium of a polarized region is quite different in the Debye and Lorentz models. Suppose that a material composed of Lorentz oscillators is electrically polarized and the static electric field is suddenly removed. The charges equilibrate by executing damped harmonic motion about their equilibrium positions. This can be seen by setting the right side of (9.3) equal to zero and solving the homogeneous differential equation with the initial conditions x = x0 and x = 0 at t = 0 the result is the damped harmonic oscillator equation ... [Pg.260]

Simple Spectral Method [23] In the simple spectral method, a model dielectric response function is used. It combines a Debye relaxation term to describe the response at microwave frequencies with a sum of terms of classical form of Lorentz electron dispersion (corresponding to a damped harmonic oscillator model) for the frequencies from IR to UV ... [Pg.22]

Fig. 7. Model calculations for the reflectivity (a) and the optical conductivity (b) for a simple (bulk) Drude metal and an effective medium of small metallic spherical particles in a dielectric host within the MG approach. The (bulk) Drude and the metallic particles are defined by the same parameters set the plasma frequency = 2 eV, the scattering rate hr = 0.2 eV. A filling factor/ = 0.5 and a dielectric host-medium represented by a Lorentz harmonic oscillator with mode strength fttOy, 1 = 10 eV, damping ftF] = I eV and resonance frequency h(H = 15 eV were considered for the calculations. Fig. 7. Model calculations for the reflectivity (a) and the optical conductivity (b) for a simple (bulk) Drude metal and an effective medium of small metallic spherical particles in a dielectric host within the MG approach. The (bulk) Drude and the metallic particles are defined by the same parameters set the plasma frequency = 2 eV, the scattering rate hr = 0.2 eV. A filling factor/ = 0.5 and a dielectric host-medium represented by a Lorentz harmonic oscillator with mode strength fttOy, 1 = 10 eV, damping ftF] = I eV and resonance frequency h(H = 15 eV were considered for the calculations.
The most simple, but general, model to describe the interaction of optical radiation with solids is a classical model, due to Lorentz, in which it is assumed that the valence electrons are bound to specific atoms in the solid by harmonic forces. These harmonic forces are the Coulomb forces that tend to restore the valence electrons into specific orbits around the atomic nuclei. Therefore, the solid is considered as a collection of atomic oscillators, each one with its characteristic natural frequency. We presume that if we excite one of these atomic oscillators with its natural frequency (the resonance frequency), a resonant process will be produced. From the quantum viewpoint, these frequencies correspond to those needed to produce valence band to conduction band transitions. In the first approach we consider only a unique resonant frequency, >o in other words, the solid consists of a collection of equivalent atomic oscillators. In this approach, coq would correspond to the gap frequency. [Pg.117]

We shall call the frequency at which t = —2em and t" — 0 the Frohlich frequency coF the corresponding normal mode—the mode of uniform polarization—is sometimes called the Frohlich mode. In his excellent book on dielectrics, Frohlich (1949) obtained an expression for the frequency of polarization oscillation due to lattice vibrations in small dielectric crystals. His expression, based on a one-oscillator Lorentz model, is similar to (12.20). The frequency that Frohlich derived occurs where t = —2tm. Although he did not explicitly point out this condition, the frequency at which (12.6) is satisfied has generally become known as the Frohlich frequency. The oscillation mode associated with it, which is in fact the lowest-order surface mode, has likewise become known as the Frohlich mode. Whether or not Frohlich s name should be attached to these quantities could be debated we shall not do so, however. It is sufficient for us to have convenient labels without worrying about completely justifying them. [Pg.327]

We start our discussion of laser-controlled electron dynamics in an intuitive classical picture. Reminiscent of the Lorentz model [90, 91], which describes the electron dynamics with respect to the nuclei of a molecule as simple harmonic oscillations, we consider the electron system bound to the nuclei as a classical harmonic oscillator of resonance frequency co. Because the energies ha>r of electronic resonances in molecules are typically of the order 1-10 eV, the natural timescale of the electron dynamics is a few femtoseconds to several hundred attoseconds. The oscillator is driven by a linearly polarized shaped femtosecond... [Pg.244]

From Eq, (1) it is clear that a model of crystal polarization that is adequate for the description of the piezoelectric and pyroelectric properties of the P-phase of PVDF must include an accurate description of both the dipole moment of the repeat unit and the unit cell volume as functions of temperature and applied mechanical stress or strain. The dipole moment of the repeat unit includes contributions from the intrinsic polarity of chemical bonds (primarily carbon-fluorine) owing to differences in electron affinity, induced dipole moments owing to atomic and electronic polarizability, and attenuation owing to the thermal oscillations of the dipole. Previous modeling efforts have emphasized the importance of one more of these effects electronic polarizability based on continuum dielectric theory" or Lorentz field sums of dipole lattices" static, atomic level modeling of the intrinsic bond polarity" atomic level modeling of bond polarity and electronic and atomic polarizability in the absence of thermal motion. " The unit cell volume is responsive to the effects of temperature and stress and therefore requires a model based on an expression of the free energy of the crystal. [Pg.196]

The latter is determined by the oscillation frequency, decaying coefficient, and vibration lifetime. This nonrigid dipole moment stipulates a Lorentz-like addition to the correlation function. As a result, the form of the calculated R-band substantially changes, if to compare it with this band described in terms of the pure hat-curved model. Application to ordinary and heavy water of the so-corrected hat-curved model is shown to improve description (given in terms of a simple analytical theory) of the far-infra red spectrum comprising superposition of the R- and librational bands. [Pg.80]

Abstract. Following a suggestion of Kostelecky et al. we have evaluated a test of CPT and Lorentz invariance from the microwave spectrosopy of muonium. Precise measurements have been reported for the transition frequencies U12 and 1/34 for ground state muonium in a magnetic field H of 1.7 T, both of which involve principally muon spin flip. These frequencies depend on both the hyperfine interaction and Zeeman effect. Hamiltonian terms beyond the standard model which violate CPT and Lorentz invariance would contribute shifts <5 12 and <5 34. The nonstandard theory indicates that P12 and 34 should oscillate with the earth s sidereal frequency and that 5v 2 and <5 34 would be anticorrelated. We find no time dependence in m2 — vza at the level of 20 Hz, which is used to set an upper limit on the size of CPT and Lorentz violating parameters. [Pg.397]

However, the theory with CPT and Lorentz violation involves spatial components in a celestial frame of reference, and since the laboratory rotates with the earth, these spatial components vary with time, and consequently the experimentally observed 1/42 and P34 may oscillate about a mean value at the earth s sidereal frequency fi = 27t/23 hr 56 rn with amplitudes 81/42 and 81/34. No such signal would be obtained from the standard model. In the non-rotating celestial frame of reference with equatorial axes x, Y,Z where Z is oriented along the earth s rotational North Pole, an experimental constraint on 81/12 implies [4]... [Pg.399]


See other pages where Lorentz oscillator model is mentioned: [Pg.96]    [Pg.148]    [Pg.64]    [Pg.96]    [Pg.148]    [Pg.64]    [Pg.313]    [Pg.313]    [Pg.313]    [Pg.347]    [Pg.416]    [Pg.143]    [Pg.143]    [Pg.14]    [Pg.259]    [Pg.125]    [Pg.262]    [Pg.228]    [Pg.228]    [Pg.230]    [Pg.265]    [Pg.80]    [Pg.227]    [Pg.245]   
See also in sourсe #XX -- [ Pg.228 , Pg.229 , Pg.230 , Pg.231 ]

See also in sourсe #XX -- [ Pg.525 ]




SEARCH



Lorentz

Lorentz model

Lorentz oscillator

Oscillator model

© 2024 chempedia.info