Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lithium reduction kinetics

Reduction of the sodium salt of equilenin 17-ethylene ketal with lithium, sodium or potassium in ammonia at —70° occurs predominantly in the B-ring, affording, after acid hydrolysis, equilin (29) in up to 76% yield (55% isolated). The preferential reduction of the B-ring reflects the relative, but not absolute, resistance to reduction conferred on the A-ring by the naphthoxide ion. Some A-ring reduction does compete kinetically with B-ring reduction, since the epimeric 3-hydroxyestra-5,7,9-trien-17-ones are the major reaction by-products. Simple phenoxide ions usually reduce slowly... [Pg.9]

A competing reaction in any Birch reduction is reaction of the alkali metal with the proton donor. The more acidic the proton donor, the more rapid IS the rate of this side reaction. Alcohols possess the optimum degree of acidity (pKa ca. 16-19) for use in Birch reductions and react sufficiently slowly with alkali metals in ammonia so that efficient reductions are possible with them. Eastham has studied the kinetics of reaction of ethanol with lithium and sodium in ammonia and found that the reaction is initially rapid, but it slows up markedly as the concentration of alkoxide ion in the mixture... [Pg.19]

Reduction of linearly conjugated 4,6-dien-3-ones with lithium-ammonia yields either 5-en-3-ones or 4-en-3-ones depending upon the work-up procedure. Protonation of the dienyl carbanion intermediate (58) occurs at C-7 to give ultimately the enolate ion (59) kinetic protonation of (59) occurs largely at C-4 to give the 5-en-3-one (60). ... [Pg.32]

If the equilibrium were established rapidly, reduction of the free ketone as it formed would result in a substantial loss of product. Lithium enolates are more covalent in character than are those of sodium and potassium and consequently are the least basic of the group. This lower thermodynamic basicity appears to be paralleled by a lower kinetic basicity several workers have shown that lithium enolates are weaker bases in the kinetic sense than are those of sodium and potassium." As noted earlier, conjugated enones... [Pg.39]

Kinetic stability of lithium and the lithiated carbons results from film formation which yields protective layers on lithium or on the surfaces of carbonaceous materials, able to conduct lithium ions and to prevent the electrolyte from continuously being reduced film formation at the Li/PC interphase by the reductive decomposition of PC or EC/DMC yielding alkyl-carbonates passivates lithium, in contrast to the situation with DEC where lithium is dissolved to form lithium ethylcarbonate [149]. EMC is superior to DMC as a single solvent, due to better surface film properties at the carbon electrode [151]. However, the quality of films can be increased further by using the mixed solvent EMC/EC, in contrast to the recently proposed solvent methyl propyl carbonate (MPC) which may be used as a single sol-... [Pg.479]

Various catalytic or stoichiometric asymmetric syntheses and resolutions offer excellent approaches to the chiral co-side chain. Among these methods, kinetic resolution by Sharpless epoxidation,14 amino alcohol-catalyzed organozinc alkylation of a vinylic aldehyde,15 lithium acetylide addition to an alkanal,16 reduction of the corresponding prochiral ketones,17 and BINAL-H reduction18 are all worth mentioning. [Pg.415]

Endo et al. investigated the reductive decomposition of various electrolytes on graphite anode materials by electron spin resonance (ESR). In all of the electrolyte compositions investigated, which included LiC104, LiBF4, and LiPFe as salts and PC, DMC, and other esters or ethers as solvents, the solvent-related radical species, which were considered to be the intermediates of reductive decomposition, were detected only after prolonged cathodic electrolysis. With the aid of molecular orbital calculation, they found that the reduction of salt anion species is very difficult, as indicated by their positive reduction enthalpy and that of free solvent (A/4 — 1 kcal mol ). However, the coordination of lithium ions with these solvents dramatically reduces the corresponding reduction enthalpy (A/ —10 kcal mol ) and renders the reaction thermodynamically favored. In other words, if no kinetic factors were to be considered, the SEI formed on carbonaceous anodes... [Pg.92]


See other pages where Lithium reduction kinetics is mentioned: [Pg.339]    [Pg.97]    [Pg.2]    [Pg.261]    [Pg.173]    [Pg.59]    [Pg.860]    [Pg.168]    [Pg.525]    [Pg.13]    [Pg.21]    [Pg.34]    [Pg.618]    [Pg.395]    [Pg.395]    [Pg.439]    [Pg.515]    [Pg.11]    [Pg.82]    [Pg.220]    [Pg.145]    [Pg.661]    [Pg.69]    [Pg.677]    [Pg.11]    [Pg.230]    [Pg.232]    [Pg.70]    [Pg.158]    [Pg.99]    [Pg.150]    [Pg.26]    [Pg.158]    [Pg.66]    [Pg.972]   
See also in sourсe #XX -- [ Pg.2 , Pg.8 ]

See also in sourсe #XX -- [ Pg.2 , Pg.8 ]




SEARCH



Kinetic reduction

Lithium aluminum hydride reduction kinetics

Lithium reductions

© 2024 chempedia.info