Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lithium 2- pyrrolidine

Lithium 2-(pyrrolidin-l-ylmethyl)pyrr Chiral allylic alcohols. Opening nishes products with moderate enantiome... [Pg.218]

Johnson and Whitehead have further shown that the reductive elimination of the pyrrolidine group from the pyrrolidine enamine of 2,4-dimethyl-cyclohexanone (16), which involved treating it with a mixture of lithium aluminum hydride and aluminum chloride (9), gave the trans isomer of 3,5-dimethyl-/l -cyclohexene (17) which on subsequent hydrogenation on a platinum catalyst led to the // onr-3,5-dimethylcyclohexane (18). [Pg.4]

Reduction of l-methyl-2-alkyl-.d -pyrroline and l-methyl-2-alkyl-.d -piperideine perchlorates with complex hydrides prepared in situ by partial decomposition of lithium aluminum hydride with the optically active alcohols (—)-menthol and (—)-borneol affords partially optically active l-methyl-2-alkyl pyrrolidines (153, n = 1) and 1-methy 1-2-alkyl piperideines (153, n = 2), respectively (241,242). [Pg.287]

Ancos and colleagues studied the behavior of 5-methoxy- 163a and (5-ethylthio)-4-pyrrolidin-l-yl-2(5//)-furanones 163b (Y = OMe, SEt) toward aldehydes (91T3171). First, the lithium enolates 164 from these furanones, generated by... [Pg.134]

The Michael additkin of Lithium etiolates to tiitroalkenes folbwed by reaction with acetic anhydnde gives acetic niironic anhydndes, which are good precursors for 1,4-diketones, pyrroles, and pyrrolidines fEq. 10.73. ... [Pg.349]

The use of hydrazone or enamine derivatives of ketones or aldehydes offers the advantage of stcreocontrol via chelated azaenolates. Extremely useful synthetic methodology, with consistently high anti selectivity, has been developed using azaenolates based on (S)- or (R)-l-amino-2-(methoxymethyl)pyrrolidine (SAMP or RAMP)51 58 (Enders method, see Section 1.5.2.4.2.2.3.). An example which illustrates the efficiency of this type of Michael addition is the addition of the lithium azaenolate of (5 )-l-amino-2-(methoxymethyl)pyrrolidine (SAMP) hydrazone of propanal (R = II) to methyl (E )-2-butenoate to give the nub-isomer (an 1 adduct) in 80% yield with a diastereomeric ratio > 98 2,... [Pg.959]

When the enolate of an ,) - or a /j,y-unsatunited amide is used, it can react in an a or in a y fashion with a,/i-unsaturated esters, however, in most cases only a-selectivity is observed. Using l-(l-oxo-2-butenyl)pyrrolidine and lithium diisopropylamide at — 78 °C in a THF/HM-I A mixture (1 1), high. syn-selective formation of 3-alkyl-5-oxo-5-(l-pyrrolidinyl)-4-vinylpen-tanoates is achieved78,381 382. Related syn- or anti-selective additions of a vinylogous urethane also are known79. [Pg.962]

Benzodiazepin-2-ones are converted efficiently into the 3-amino derivatives by reaction with triisopropylbenzenesulfonyl (trisyl) azide followed by reduction <96TL6685>. Imines from these amines undergo thermal or lithium catalysed cycloaddition to dipolarophiles to yield 3-spiro-pyrrolidine derivatives <96T13455>. Thus, treatment of the imine 50 (R = naphthyl) with LiBr/DBU in the presence of methyl acrylate affords 51 in high yield. [Pg.326]

The metals were coprecipitated with lead-ammonium pyrrolidine dithio-carbamate and detected by X-ray spectrometry following neutron activation. Magnetic fields deflect the p rays while the X rays reach the silicon (lithium) detector undeviated. The detectors have low sensitivity to y rays. The concentration of cobalt found by this method was 1.3 xg/l, about one-fifth of that measured previously, while that of copper, 2.0 xg/l, agreed with results obtained by some previous workers. The concentration of mercury was 1.2 xg/l. [Pg.281]

Tseng et al. [69] determined 60cobalt in seawater by successive extractions with tris(pyrrolidine dithiocarbamate) bismuth (III) and ammonium pyrrolidine dithiocarbamate and back-extraction with bismuth (III). Filtered seawater adjusted to pH 1.0-1.5 was extracted with chloroform and 0.01 M tris(pyrrolidine dithiocarbamate) bismuth (III) to remove certain metallic contaminants. The aqueous residue was adjusted to pH 4.5 and re-extracted with chloroform and 2% ammonium pyrrolidine thiocarbamate, to remove cobalt. Back-extraction with bismuth (III) solution removed further trace elements. The organic phase was dried under infrared and counted in a ger-manium/lithium detector coupled to a 4096 channel pulse height analyser. Indicated recovery was 96%, and the analysis time excluding counting was 50-min per sample. [Pg.353]

Intramolecular nitrile oxide—olefin cycloaddition of oxazolidine and thiazoli-dine oximes 407 (R = H, Me R1 =H, Me X = 0, S n = 1,2) proceed stereose-lectively, yielding tricyclic fused pyrrolidines and piperidines. Thus, 407 (n =2 R = H R1 =Me X=S) has been oxidized to the nitrile oxides with sodium hypochlorite, in the presence of triethylamine in methylene chloride, to give the isoxazolothiazolopyridine 408 in 68% yield. Reduction of 408 with lithium aluminum hydride affords mercaptomethylmethylpiperidine 409 in 24% yield (448). [Pg.87]

As with the above pyrrolidine, proline-type chiral auxiliaries also show different behaviors toward zirconium or lithium enolate mediated aldol reactions. Evans found that lithium enolates derived from prolinol amides exhibit excellent diastereofacial selectivities in alkylation reactions (see Section 2.2.32), while the lithium enolates of proline amides are unsuccessful in aldol condensations. Effective chiral reagents were zirconium enolates, which can be obtained from the corresponding lithium enolates via metal exchange with Cp2ZrCl2. For example, excellent levels of asymmetric induction in the aldol process with synj anti selectivity of 96-98% and diastereofacial selectivity of 50-200 116a can be achieved in the Zr-enolate-mediated aldol reaction (see Scheme 3-10). [Pg.144]

An efficient synthesis of ( )-yohimbine has been published by Stork and Guthikonda (222). Reaction of the pyrrolidine enamine of A-methylpiperidone with methyl 3-oxo-4-pentenoate gave 411 in good yield. Reduction of 411 with lithium in liquid ammonia furnished trans-TV-methyldecahydroisoquinolone 412. This building block was transformed in simple reaction steps to secoyohimbane 413 from which ( )-yohimbine could be obtained by oxidative cyclization with... [Pg.214]

Enantioselective a-hydroxylotion of carbonyl compounds. The lithium enolates of the SAMP-hydrazones of ketones undergo facile and diastereoselective oxidation with 2-phenylsulfonyl-3-phenyloxaziridine (13, 23-24) to provide, after ozonolysis, (R)-a-hydroxy ketones in about 95% ee. High enantioselectivity in hydroxylation of aldehydes requires a more demanding side chain on the pyrrolidine ring such as —QCjHOjOCH, which also results in reversal of the configuration. [Pg.22]

Lithium ( )- or (Z)-5-alkenylamides are converted regio- and stereoselectively in a 5-exo-fng-cyclization of an intermediate amide radical to substituted pyrrolidines [84]. [Pg.408]

Neutral aminyl radicals generated by anodic oxidation of lithium alkenyl amides undergo a stereoselective cyclization to cis-l-methyl-2,5-disubstituted pyrrolidines [249]. [Pg.428]

The cyclization of the lithium amide 29a to 2,5-disubstituted pyrrolidine shown in Scheme 17 is clearly a one-electron oxidation process. This suggests that the radical 29c is not an oxidizable species at the applied potential and thus... [Pg.108]

On the basis of this conclusion and on NMR studies of complexes of 17b with Lewis acids, a transition state model to explain the observed selectivity was proposed. This involved initial complexation of a cuprate lithium ion to the three different heteroatoms in the substrate, followed by formation of a A-n complexation product from the less hindered si face, the re face being shielded by the pyrrolidine ring (Fig. 8.2). [Pg.272]

Better reagents than lithium aluminum hydride alone are its alkoxy derivatives, especially di- and triethoxyaluminohydrides prepared in situ from lithium aluminum hydride and ethanol in ethereal solutions. The best of all, lithium triethoxyaluminohydride, gave higher yields than its trimethoxy and tris(/er/-butoxy) analogs. When an equimolar quantity of this reagent was added to an ethereal solution of a tertiary amide derived from dimethylamine, diethylamine, W-methylaniline, piperidine, pyrrolidine, aziridine or pyrrole, and the mixture was allowed to react at 0° for 1-1.5 hours aldehydes were isolated in 46-92% yields [95,1107], The reaction proved unsuccessful for the preparation of crotonaldehyde and cinnamaldehyde from the corresponding dimethyl amides [95]. [Pg.165]

These organolithiums were also available in nonracemic form, which allowed the evaluation of the steric course of these reactions. Scheme 9 summarizes the steric course for pyrrolidines, and Scheme 10 for piperidines. In the discussion that follows, it is assumed that the transmetalation from tin to lithium takes place with retention of configuration at... [Pg.1009]

Comparison of the configuration of the stannane with the prodncts of reaction reveals that primary alkyl halides that are not benzyhc or a to a carbonyl react with inversion at the lithium-bearing carbon atom. In the piperidine series, the best data are for the 3-phenylpropyl compound, which was shown to be >99 1 er. In the pyrrolidine series, the er of the analogous compound indicates 21-22% retention and 78-79% inversion of configuration. Activated alkyl halides such as benzyl bromide and teri-butyl bromoacetate afford racemic adducts. In both the pyrrolidine and piperidine series, most carbonyl electrophiles (i.e. carbon dioxide, dimethyl carbonate, methyl chloroformate, pivaloyl chloride, cyclohexanone, acetone and benzaldehyde) react with virtually complete retention of configuration at the lithium-bearing carbon atom. The only exceptions are benzophenone, which affords racemic adduct, and pivaloyl chloride, which shows some inversion. The inversion observed with pivaloyl chloride may be due to partial racemization of the ketone product during work-up. [Pg.1010]


See other pages where Lithium 2- pyrrolidine is mentioned: [Pg.219]    [Pg.60]    [Pg.133]    [Pg.101]    [Pg.828]    [Pg.962]    [Pg.996]    [Pg.372]    [Pg.15]    [Pg.88]    [Pg.128]    [Pg.687]    [Pg.244]    [Pg.174]    [Pg.142]    [Pg.57]    [Pg.536]    [Pg.556]    [Pg.557]    [Pg.584]    [Pg.286]    [Pg.108]    [Pg.8]    [Pg.21]    [Pg.32]    [Pg.100]    [Pg.365]    [Pg.1002]    [Pg.1004]    [Pg.1008]   
See also in sourсe #XX -- [ Pg.219 ]




SEARCH



Pyrrolidines chiral lithium amides

© 2024 chempedia.info