Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lithium complexes configuration

The X-ray crystal structure of A -Boc-A -/7-methoxyphenyl-3-phenylallyI-lithium-(-)-sparteine complex has been reported [184], This structure differs from the previous structure in that the lithium is associated in an -fashion. The lithium-(-)-sparteine complex resides on the Re face of the ally unit. Stannylation of the lithium complex was established to occur with inversion of configuration. [Pg.382]

If the tetrahydroisoquinoline moiety is connected to a chiral bidentatc complexing group, e.g., 4, then the preformed complex with butyllithium results in rapid removal of the proton from the st-face, forming the lithium complex. In contrast to alkylation, deuteration of this complex by dimethyl sulfoxide-fif6 occurs with retention of configuration (5)11. [Pg.556]

Acid resistance This property is best appreciated when the glass structure is understood. Most enamel frits are complex alkali metal borosilicates and can be visualised as a network of Si04 tetrahedra and BO, triangular configurations containing alkali metals such as lithium, sodium and potassium or alkaline earth metals, especially calcium and barium, in the network interstices. [Pg.740]

The situation in beryllium metal is more complex. We might expect all of the 2s molecular orbitals to be filled because beryllium has the electron configuration ls22s2. However, in a crystal of beryllium, the 2p MO band overlaps the 2s (Figure 5). This means that, once again, there are vacant MOs that differ only infinitesimally in energy from filled MOs below them. This is indeed the basic requirement for electron conductivity it is characteristic of all metals, including lithium and beryllium. [Pg.655]

The lithium-(-)-sparteine complex, generated by deprotonation of 1-methylindene, does not lose its configuration in diethyl ether solution even at room temperature80 presumably, the observed major diastcreonier is the thermodynamically determined product. Substitution with carbonyl compounds leads to 1-substituted (fl)-l-methyl-l//-indenes with >95% ee in high yields81. [Pg.239]

The problem can be solved by the transformation of the lithium carbanions into the more reactive trichlorotitanium intermediates via the stannanes. Finally, the (- )-sparteine complex of (5)-( )-l-methyl-2-butenyl diisopropylcarbamate105 (Section 1.3.3.3.1.2.) is apparently transmetalated by tetraisopropoxytitanium with inversion of configuration, leading to homoaldol products with moderate diastereomeric excess103. [Pg.421]

Enantiomerically and diastereomerically enriched lithium-(-)-sparteine complexes of primary 2-alkenylcarbamates, which are configurationally stable as solids (Section 1.3.3.3.1.2.), are transmetalated stereospecifcally by tetraisopropoxytitanium. The resulting titanates are stable in solution and give rise to homoaldol adducts with enantiomeric purities up to 94 % ee107,107a. [Pg.422]

Further on, the Co-Ni complexes were used for modification of Hohsen Carbon type (10-10) and Hohsen Graphite type (10-28) anode materials for Li-ion batteries applying similar procedure. These anode materials were tested in 2016 size lithium coin cells with a configuration Li/electrolyte (LP-30)/(modified anode material). The coin cells were assembled by standard technology in dry atmosphere of a glove box and then... [Pg.347]

The second example concerns the lithium ion, either considered in a cluster of water molecules or in aqueous solution. The idealized solution at infinite dilution of a lithium ion (without counter-ion) predicts six molecules of water in the first solvation shell if one uses pair-wise 2-body interactions, but the same type of computation predicts four molecules of water when 3-body effects are included. The computations were performed at room temperature. We have performed cluster computations for the Li fTO), system, with n = 1,2,3,4,5 and 6, using a density functional program developed in our laboratory. When we compute the most stable configuration for the pentamer complex Li+( starting from the most stable config-... [Pg.182]

Better results were obtained for the carbamate of 163 (entry 3) [75, 80). Thus, deprotonation of the carbamate 163 with a lithium base, followed by complexation with copper iodide and treatment with one equivalent of an alkyllithium, provided exclusive y-alkylation. Double bond configuration was only partially maintained, however, giving 164 and 165 in a ratio of 89 11. The formation of both alkene isomers is explained in terms of two competing transition states 167 and 168 (Scheme 6.35). Minimization of allylic strain should to some extent favor transition state 167. Employing the enantiomerically enriched carbamate (R)-163 (82% ee) as the starting material, the proposed syn-attack of the organocopper nucleophile could then be as shown. Thus, after substitution and subsequent hydrogenation, R)-2-phenylpentane (169) was obtained in 64% ee [75]. [Pg.213]

Benzylic halides are reduced very easily using complex hydrides. In a-chloroethylbenzene lithium aluminium deuteride replaced the benzylic chlorine by deuterium with inversion of configuration (optical purity 79%) [537]. Borane replaced chlorine and bromine in chloro- and bromodiphenylme-thane, chlorine in chlorotriphenylmethane and bromine in benzyl bromide by hydrogen in 90-96% yields. Benzyl chloride, however, was not reduced [5iSj. Benzylic chlorine and bromine in a jy/n-triazine derivative were hydrogeno-lyzed by sodium iodide in acetic acid in 55% and 89% yields, respectively [5i9]. [Pg.67]

An extensive review appeared on the configurational stability of enantiomeric organolithium reagents and the transfer of the steric information in their reactions. From the point of view of the present chapter an important factor that can be evaluated is the ease by which an inversion of configuration takes place at the metallation site. It happens that H, Li, C and P NMR spectra of diastereotopic species have been central to our understanding of the epimerization mechanism depicted in equation 26, where C and epi-C represent the solvated complex of one chiral species and its epimer, respectively. It has been postulated that inversion of configuration at the Li attachment site takes place when a solvent-separated ion pair is formed. This leads to planarization of the carbanion, its rotation and recombination to form the C—Li bond, as shown in equation 27, where Li+-L is the solvated lithium cation. An alternative route for epimerization is a series of... [Pg.343]

The enantioselective addition of the amino organolithium reagents consists of two stereo-controlled reactions, the asymmetric deprotonation (equation 14) and the following addition to electrophiles. The stereochemical course of the addition depends on the electrophile E. In the cases where heterocyclic enone or a,-unsaturated lactones are the electrophiles (entries 5-7), the addition proceeds with retention of configuration. In contrast, with the other electrophiles in Table 10 and trimethyltin chloride in equation 15, the addition proceeds with inversion of configuration. In the addition which proceeds with retention of configuration, a pre-complexation between the electrophiles and lithium may be involved (equation 16). [Pg.933]

The utility of -phenyl camphor-derived oxazolidinones as chiral formyl anion syn-thons has been demonstrated by Gawley and coworkers (Scheme 42). Deprotonation yields a dipole-stabihzed organolithium intermediate and the absolute configuration of the lithium-bearing carbon is presumed to be R. Additions to benzaldehyde and cyclohexane carboxaldehyde are 86% and 76% diastereoselective, respectively, but recrystallization affords a single diastereomer in the yields shown. Addition is postulated to proceed via the pre-complex shown in the inset, in which the aldehyde is coordinated to the R epimer... [Pg.1030]


See other pages where Lithium complexes configuration is mentioned: [Pg.381]    [Pg.154]    [Pg.86]    [Pg.180]    [Pg.56]    [Pg.434]    [Pg.233]    [Pg.29]    [Pg.176]    [Pg.423]    [Pg.447]    [Pg.621]    [Pg.902]    [Pg.326]    [Pg.539]    [Pg.23]    [Pg.61]    [Pg.194]    [Pg.16]    [Pg.160]    [Pg.539]    [Pg.88]    [Pg.90]    [Pg.82]    [Pg.906]    [Pg.110]    [Pg.113]    [Pg.242]    [Pg.352]    [Pg.375]    [Pg.697]    [Pg.999]    [Pg.1030]    [Pg.1043]   
See also in sourсe #XX -- [ Pg.41 ]




SEARCH



Configuration complexes

Lithium complexes

© 2024 chempedia.info