Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid crystal phase stability

An explanation for this gel formation is sought in the phase transition behavior of span 60. At the elevated temperature (60 °C) which exceeds the span 60 membrane phase transition temperature (50 °C) [154], it is assumed that span 60 surfactant molecules are self-assembled to form a liquid crystal phase. The liquid crystal phase stabilizes the water droplets within the oil. However, below the phase transition temperature the gel phase persists and it is likely that the monolayer stabilizing the water collapses and span 60 precipitates within the oil. The span 60 precipitate thus immobilizes the liquid oil to form a gel. Water channels are subsequently formed when the w/o droplets collapse. This explanation is plausible as the aqueous volume marker CF was identified within these elongated water channels and non-spherical aqueous droplets were formed within the gel [153]. These v/w/o systems have been further evaluated as immunological adjuvants. [Pg.72]

The chiral centre as part of the terminal chain is the usttal situation however, this necessitates branching which dismpts liqirid crystal phase stability, usttally by more than any reduction in melting point. When the chiral centre is close to the core this steric effect is more excessive if the chiral cerrtre is towards the end of the terminal chain then its steric effect is somewhat diluted arrd so liquid crystal phase stability is upheld. Accordingly, the best position for the chiral centre may be at the end of the chain. However, the Pg is strongly affected by the position of the chiral centre with respect to... [Pg.120]

The use of latoal substituents in liquid crystals has proved to be very important, initially in nematic material and lata- in smectic C matoials. Clearly, anything that sticks off the side of a rod-like molecule will tend to reduce the liquid crystal phase stability, and genmlly the larg the lateral substituent the greater the reduction in liquid crystal phase stability. Usually, the smectic phase stability is much mmre affected than that of the nematic phas especially by larger substitumts because of the obvious reduction in lateral attractions, but increased lateral attractions associated with polar substituents cause a smaller reduction in smectic phase stability (see compounds 52-57) [46]. [Pg.44]

Another approach to get new liquid crystals is the lateral fluorination of the stilbazole ligands,337 which is a common and highly effective tool to exert control over mesomorphism, crystal phase stability, and physical properties. Other modifications include the use of more alkoxy substituents and other alkyl sulfate anions.338-344 Ionic silver amino complexes also display liquid crystalline behavior at rather low temperatures they are of the form [Ag(NH2 -CJl +OJX (X = N03, n = 6,8,10,12,14 X = BF4, = 8,10,12,14).345... [Pg.926]

Nucleosome-nucleosome interaction potentials can be calibrated by comparison with the characteristics of liquid crystals of mononucleosomes at high concentrations. Under suitable conditions, nucleosome core particles form a hexagonal-columnar phase with a distance of 11.55 1 nm between the columns and a mean distance of 7.16 0.65 nm between the particles in one column [44,46]. These distances may be assumed to correspond to the positions of the minima of an attractive internucleosomal potential. The depth of the interaction potential (i.e., the binding energy per nucleosome) was estimated in the stretching experiments of Cui and Bustamante [66] to 2.6-3.4 kT. A slightly lower potential minimum of 1.25 kT is obtained by a comparison of the stability of the nucleosome liquid crystal phase with simulations [50]. [Pg.402]

The introduction of liquid crystals as stabilizing elements for emulsions occurred in 1969 when it was found that the sudden stabilization at emulsifier concentrations in excess of 2.5% of a water—p-xylene emulsion by a commercial octa(ethylene glycol) nonylphenyl ether was due to the formation of a liquid crystalline phase in the emulsion (26). Later investigations confirmed the strong stabilizing action of these structures (27). [Pg.201]

The nematic phase (N) is the least ordered, and hence the most fluid liquid crystal phase. The order in this type of LC phases is based on a rigid and anisometric (in most cases rod-shaped or disc-shaped) molecular architecture. Such molecules tend to minimize the excluded volume between them, and this leads to long range orientational order. For rod-like molecules the ratio between molecular length and its broadness determines the stability of the nematic phase with respect to the isotropic liquid state and the stability rises with increase of this ratio. In most cases the rigid cores are combined with flexible chains, typically alkyl chains, which hinder crystallization and in this way retain fluidity despite of the onset of order. [Pg.5]

Depending on temperature, transitions between distinct types of LC phases can occur.3 All transitions between various liquid crystal phases with 0D, ID, or 2D periodicity (nematic, smectic, and columnar phases) and between these liquid crystal phases and the isotropic liquid state are reversible with nearly no hysteresis. However, due to the kinetic nature of crystallization, strong hysteresis can occur for the transition to solid crystalline phases (overcooling), which allows liquid crystal phases to be observed below the melting point, and these phases are termed monotropic (monotropic phases are shown in parenthesis). Some overcooling could also be found for mesophases with 3D order, namely cubic phases. The order-disorder transition from the liquid crystalline phases to the isotropic liquid state (assigned as clearing temperature) is used as a measure of the stability of the LC phase considered.4... [Pg.9]

The thermal stability of metal nanoparticles (for the most part nanoparticles used in liquid crystal phases with high phase transition temperatures or nanoparticles decorated with functional molecules) should also be of significant importance,... [Pg.335]

The presence of mixed surfactant adsorption seems to be a factor in obtaining films with very viscous surfaces [411]. For example, in some cases the addition of a small amount of non-ionic surfactant to a solution of anionic surfactant can enhance foam stability due to the formation of a viscous surface layer, which is possibly a liquid crystalline surface phase in equilibrium with a bulk isotropic solution phase [25,110], In general, some very stable foams can be formed from systems in which a liquid crystal phase is present at lamella surfaces and in equilibrium with an isotropic interior liquid. If only the liquid crystal phase is present, stable foams are not produced. In this connection foam phase diagrams may be used to delineate compositions that will produce stable foams [25,110],... [Pg.194]

Understanding surfactant phase behavior is important because it controls physical properties such as rheology and freeze-thaw stability of formulations. It is also closely related to the ability to form and stabilize emulsions and microemulsions. Micelles, vesicles, mi-croemulsions and liquid crystal phases have all been used as delivery vehicles for perfumes or other active ingredients. [Pg.194]

Another saturated tetrahydrofuryl core has found application as a component of liquid crystals. Cholesteric liquid crystal polymers are useful as photostable UV filters in cosmetic and pharmaceutical preparations for the protection of human epidermis and hair against UV radiation, especially in the range 280-450nm <2000DEP19848130>. Fused bifuran 81 is a suitable monomer for the preparation of these desired polymers as it contains the requisite characteristics of having more than one chiral, bifunctional subunit type which is capable of forming a cholesteric liquid crystal phase with a pitch of <450 nm. It also contains an achiral aromatic or cycloaliphatic hydroxyl or amino carboxylic acid subunit, achiral aromatic or cycloaliphatic dicarboxylic acids, and/or achiral aromatic or cycloaliphatic diols or diamines. Polymers prepared from suitable monomers, such as diol 81, can also be used as UV reflectors, UV stabilizers, and multilayer pigments. [Pg.584]

The presence of liquid crystal structures at both the w-o and o-w interfaces in multiple emulsions has been investigated by Kavaliunas and Frank (31). Microscopic examination of w/o/w emulsions between crossed polarizers revealed the presence of liquid crystal phases at both inner (w-o) and outer (o-w) interfaces in a w/o/w system composed of water, p-xylene and nonylphenol diethylene glycol ether. Liquid crystalline phases were also detected in o/w/o emulsions at both interfaces. The presence of these liquid crystal structures was found to improve the stability of the emulsions markedly. Matsumoto (32, 33) have concluded that the oil layers in w/o/w systems are likely to be composed of or contain,at least in proximity to the aqueous phase,multilamellar layers of the lipophilic surfactant used in the formulation this is postulated in part to explain the rate of volume flux of water through the oily layer. [Pg.366]

The following protocols (6-10) describe the synthesis of some cholesterol-based acrylates and their photopolymerization in an aligned cholesteric phase. The protocols utilize a modification of a system previously described by Shannon. 5 6 ip ie absence of a diacrylate comonomer, the cholesteric phase produced initially on copolymerization is not stable and reverts to a smectic phase on a single cycle of heating and cooling. In the presence of the diacrylate the first-formed phase is stable. This is one example of how crosslinking can stabilise the liquid crystal phase in liquid crystalline elastomers, others include, the so-called, polymer-stabilized liquid crystals and those described in the later protocols. [Pg.229]

The dispersed liquid crystals can stabilize the mixed phase. [Pg.477]

The exposure of the fullerene unit is shown in Fig. 66. The mesogenic groups cluster together as they stabilize an ensemble that would support the formation of a liquid crystal phase. The exposed fullerene is then free to interact with other fullerenes, thereby potentially stabilizing the formation of a lamellar phase. [Pg.56]

Because of the additional translational order, the dislocations can exist in the cholesteric and smectic liquid crystals, which makes the texture of these liquid crystals even more complicated. Each liquid crystal phase shows characteristic textures and thus the optical texture becomes an important means to differentiate the phase of the liquid crystals. Liquid crystalline polymers have the same topologically stable defects as small molecular mass liquid crystals do, but the textures may be different due to the difference in the energetic stability of the same topological defects in both low molecular mass and polymeric liquid crystals (Kleman, 1991). In Chapter 3 we will discuss the textures in detail. [Pg.44]

It is also interesting to mention that the compound (3.11) is the first published example that has lateral but no terminal substitutions and yet forms a liquid crystal phase. By and large, the studies on substitution effect have shown that while the terminal substitutions are favorable to the thermal stability and the formation of a liquid crystal phase, the lateral substitutions are not. The larger the lateral substitution, the more harm it can do to the thermal stability of the liquid crystalline phase. A typical and very convincing example for this idea is given by homologues of the well known para-substituted azoxyanisole (3.12) ... [Pg.146]


See other pages where Liquid crystal phase stability is mentioned: [Pg.53]    [Pg.59]    [Pg.62]    [Pg.63]    [Pg.66]    [Pg.71]    [Pg.73]    [Pg.122]    [Pg.122]    [Pg.42]    [Pg.39]    [Pg.45]    [Pg.53]    [Pg.59]    [Pg.62]    [Pg.63]    [Pg.66]    [Pg.71]    [Pg.73]    [Pg.122]    [Pg.122]    [Pg.42]    [Pg.39]    [Pg.45]    [Pg.199]    [Pg.88]    [Pg.340]    [Pg.370]    [Pg.272]    [Pg.188]    [Pg.9]    [Pg.86]    [Pg.170]    [Pg.112]    [Pg.3]    [Pg.475]    [Pg.147]    [Pg.335]    [Pg.640]    [Pg.161]    [Pg.133]    [Pg.145]    [Pg.145]    [Pg.146]   
See also in sourсe #XX -- [ Pg.51 ]




SEARCH



Crystal phases

Crystal stability

Crystallization stability

Liquid crystal phase

Liquid stabilization

Liquids stability

Nematic liquid crystal phase stability

Phase stability

Polymer network stabilized liquid crystal phase

Polymer-Stabilized Blue Phase Liquid Crystals

© 2024 chempedia.info