Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protein Liquid Chromatography

S.P. Zheng, K.A. Schneider, T.J. Barder, and D.M. Lubman, Two-dimensional liquid chromatography protein expression mapping for differential proteomic analysis of normal and O157 H7 Escherichia coli. Biotechniques, 35, 1202-1212 (2003). [Pg.84]

Hoffmann, J. A., Chance, R. E., and Johnson, M. G., 1990, Purification and analysis of the major components of chum salmon protamine contained in insulin formulations using hi -performance liquid chromatography. Protein Expr. Purif 1 127-133. [Pg.395]

For mixture.s the picture is different. Unless the mixture is to be examined by MS/MS methods, usually it will be necessary to separate it into its individual components. This separation is most often done by gas or liquid chromatography. In the latter, small quantities of emerging mixture components dissolved in elution solvent would be laborious to deal with if each component had to be first isolated by evaporation of solvent before its introduction into the mass spectrometer. In such circumstances, the direct introduction, removal of solvent, and ionization provided by electrospray is a boon and puts LC/MS on a level with GC/MS for mixture analysis. Further, GC is normally concerned with volatile, relatively low-molecular-weight compounds and is of little or no use for the many polar, water soluble, high-molecular-mass substances such as the peptides, proteins, carbohydrates, nucleotides, and similar substances found in biological systems. LC/MS with an electrospray interface is frequently used in biochemical research and medical analysis. [Pg.59]

Typically, quantitative protein determination is done on the one hand by colorimetric or nephelometric methods, on the other hand for more difficult analytical problems by more sophisticated techniques such as high performance liquid chromatography (HPLC), gel-electrophoresis and immunoassay. However, these methods are tedious, time-consuming and expensive. [Pg.100]

The liquid chromatography - tandem mass spectrometry (LC/MS/MS) technique was proposed for the determination of corticosteroids in plasma and cerebrospinal fluid (CSF, liquor) of children with leucosis. Preliminai y sample prepai ation included the sedimentation of proteins, spinning and solid-phase extraction. MS detection was performed by scanning selected ions, with three chai acteristic ions for every corticosteroids. The limit of detection was found 80 pg/ml of plasma. [Pg.351]

SynChropak GPC supports were introduced in 1978 as the first commercial columns for high-performance liquid chromatography of proteins. SynChropak GPC columns were based on research developed by Fred Regnier and coworkers in 1976 (1,2). The first columns were only available in 10-yu,m particles with a 100-A pore diameter, but as silica technology advanced, the range of available pore diameters increased and 5-yu,m particle diameters became available. SynChropak GPC and CATSEC occasionally were prepared on larger particles on a custom basis, but generally these products have been intended for analytical applications. [Pg.305]

APPLICATION OF SIZE EXCLUSION-HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY FOR BIOPHARMACEUTICAL PROTEIN AND PEPTIDE THERAPEUTICS... [Pg.531]

W. G. Button, K. D. Nugent, T. K. Slattery, B. R. Summers and L. R. Snyder, Separation of proteins by reversed-phase high-performance liquid chromatography , 7. Chromatogr. 443 363-379(1988). [Pg.213]

H. Yamamoto, T. Manabe and T. Okuyama, Apparatus for coupled high-performance liquid chromatography and capillary electrophoresis in the analysis of complex protein mixtures , 7. Chromatogr. 515 659-666 (1990). [Pg.214]

J. P. Larmann-Jr, A. V. Lemmo, A. W. Moore and J. W. Jorgenson, Two-dimensional sep-ar ations of peptides and proteins by comprehensive liquid chromatography-capillary electrophoresis . Electrophoresis 14 439-447 (1993). [Pg.214]

Flavin adenine dinucleotide Riboflavin 5 -monophosphate Riboflavin 5 -monophosphate, reduced form Fast protein liquid chromatography (Pharmacia)... [Pg.484]

For Yiv > YPv> where y v and Ypv are the surface tensions of liquid and protein, respectively, AFads increases with increasing ysv, predicting decreasing polymer adsorption. An example of this is phosphate buffer saline where y]v = 72.9 mJ/m2 and Ypv is usually between 65 and 70mJ/m2 for most proteins [5]. Therefore, supports for gel-permeation and affinity chromatography should be as hydrophilic as possible in order to minimize undesirable adsorption effects. [Pg.137]

The Tools of Proteomics A variety of methods and techniques including two-dimensional gel electrophoresis (2DE), capillary liquid chromatography, stable isotope labeling, and mass spectrometry has been developed for qualitative and quantitative protein... [Pg.1028]

Figure 5.6 Positive-ion electrospray spectrum obtained from the major component in the LC-MS analysis of a purified recombinant 62 kDa protein using a Cig microbore 50 X 1 mm column and a flow rate of 50 p.lmin . The starting buffer (buffer A ) was 0.1% TEA in water, while the gradient buffer (buffer B ) consisted of 0.1% TEA in acetonitrile-water (9 1 vol/vol). The running conditions consisted of 0% B for 5 min, followed by a linear gradient of 100% B for 55 min. Reprinted from J. Chromatogr., B, 685, McAtee, C. P., Zhang, Y., Yarbough, P. O., Fuerst, T. R., Stone, K. L., Samander, S. and Williams, K. R., Purification and characterization of a recombinant hepatitis E protein vaccine candidate by liquid chromatography-mass spectrometry , 91-104, Copyright (1996), with permission from Elsevier Science. Figure 5.6 Positive-ion electrospray spectrum obtained from the major component in the LC-MS analysis of a purified recombinant 62 kDa protein using a Cig microbore 50 X 1 mm column and a flow rate of 50 p.lmin . The starting buffer (buffer A ) was 0.1% TEA in water, while the gradient buffer (buffer B ) consisted of 0.1% TEA in acetonitrile-water (9 1 vol/vol). The running conditions consisted of 0% B for 5 min, followed by a linear gradient of 100% B for 55 min. Reprinted from J. Chromatogr., B, 685, McAtee, C. P., Zhang, Y., Yarbough, P. O., Fuerst, T. R., Stone, K. L., Samander, S. and Williams, K. R., Purification and characterization of a recombinant hepatitis E protein vaccine candidate by liquid chromatography-mass spectrometry , 91-104, Copyright (1996), with permission from Elsevier Science.
Table 5.7 Theoretically predicted polypeptides from the trypsin digestion of S-lacto-globulin (/3LG) . Reprinted from J. Chromatogr., A, 763, Turula, V. E., Bishop, R. T., Ricker, R. D. and de Haseth, J. A., Complete structure elucidation of a globular protein by particle beam liquid chromatography-Fourier transform infrared spectrometry and electrospray liquid chromatography-mass spectrometry - Sequence and conformation of /3-lactoglobulin , 91-103, Copyright (1997), with permission from Elsevier Science... Table 5.7 Theoretically predicted polypeptides from the trypsin digestion of S-lacto-globulin (/3LG) . Reprinted from J. Chromatogr., A, 763, Turula, V. E., Bishop, R. T., Ricker, R. D. and de Haseth, J. A., Complete structure elucidation of a globular protein by particle beam liquid chromatography-Fourier transform infrared spectrometry and electrospray liquid chromatography-mass spectrometry - Sequence and conformation of /3-lactoglobulin , 91-103, Copyright (1997), with permission from Elsevier Science...

See other pages where Protein Liquid Chromatography is mentioned: [Pg.133]    [Pg.482]    [Pg.133]    [Pg.482]    [Pg.55]    [Pg.61]    [Pg.1536]    [Pg.390]    [Pg.502]    [Pg.325]    [Pg.1030]    [Pg.1031]    [Pg.531]    [Pg.113]    [Pg.1]    [Pg.250]    [Pg.251]    [Pg.9]    [Pg.136]    [Pg.145]    [Pg.150]    [Pg.393]    [Pg.1030]    [Pg.139]    [Pg.199]    [Pg.232]    [Pg.138]    [Pg.245]    [Pg.465]    [Pg.122]    [Pg.256]    [Pg.285]    [Pg.74]    [Pg.80]   
See also in sourсe #XX -- [ Pg.45 ]




SEARCH



Proteins chromatography

© 2024 chempedia.info