Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lipoxygenase, function

Applications of peroxide formation are underrepresented in chiral synthetic chemistry, most likely owing to the limited stability of such intermediates. Lipoxygenases, as prototype biocatalysts for such reactions, display rather limited substrate specificity. However, interesting functionalizations at allylic positions of unsaturated fatty acids can be realized in high regio- and stereoselectivity, when the enzymatic oxidation is coupled to a chemical or enzymatic reduction process. While early work focused on derivatives of arachidonic acid chemical modifications to the carboxylate moiety are possible, provided that a sufficiently hydrophilic functionality remained. By means of this strategy, chiral diendiols are accessible after hydroperoxide reduction (Scheme 9.12) [103,104]. [Pg.241]

It is possible that dietary flavonoids participate in the regulation of cellular function independent of their antioxidant properties. Other non-antioxidant direct effects reported include inhibition of prooxidant enzymes (xanthine oxidase, NAD(P)H oxidase, lipoxygenases), induction of antioxidant enzymes (superoxide dismutase, gluthathione peroxidase, glutathione S-transferase), and inhibition of redox-sensitive transcription factors. [Pg.138]

Yamamoto, S. (1992). Mammalian lipoxygenases molecular structures and functions. Biochim. Biophys. Acta 1128, 117-131. [Pg.37]

We previously described [25] the function of soybean lipoxygenase-1 in a biphasic system (modified Lewis cell) composed of an aqueous phase (borate buffer) and octane. The substrate of the reaction is linoleic acid (LA) and the main product is hydro-peroxyoctadecadienoic acid (LIP). The system involves two phenomena LA transfer from the organic to the aqueous phase and lipoxygenase kinetics in the aqueous medium. [Pg.572]

Liavonchanka A and Feussner, I. 2006. Lipoxygenases occurrence, functions and catalysis. J Plant Physiol 163 348-357. [Pg.128]

In addition to the aforementioned allenic steroids, prostaglandins, amino acids and nucleoside analogs, a number of other functionalized allenes have been employed (albeit with limited success) in enzyme inhibition (Scheme 18.56) [154-159]. Thus, the 7-vinylidenecephalosporin 164 and related allenes did not show the expected activity as inhibitors of human leukocyte elastase, but a weak inhibition of porcine pancreas elastase [156], Similarly disappointing were the immunosuppressive activity of the allenic mycophenolic acid derivative 165 [157] and the inhibition of 12-lipoxygenase by the carboxylic acid 166 [158]. In contrast, the carboxyallenyl phosphate 167 turned out to be a potent inhibitor of phosphoenolpyruvate carboxylase and pyruvate kinase [159]. Hydrolysis of this allenic phosphate probably leads to 2-oxobut-3-enoate, which then undergoes an irreversible Michael addition with suitable nucleophilic side chains of the enzyme. [Pg.1031]

The acid-soluble SH-groups in platelets are mainly those of glutathione (GSH). GSH is a cofactor for enzymes such as peroxidase. If feverfew is able to interfere with this cofactor, enzyme function may be impaired. One pathway that may be affected in this way is the metabolism of arachidonic acid (Figure 6.1). In the presence of feverfew extract an increase was found in lipoxygenase product formation and impaired conversion of HPETE to HETE, for which GSH is a cofactor [52]. Inhibition of the liberation of [ " C]arachidonic acid from phospholipids was also found [53], which implies impairment of phospholipase A2 activity and for which SH-groups are thought to be important. [Pg.232]

Tenidap (Figure 8.26) is a dual cyclooxygenase (COX) and 5-lipoxygenase (5-LPO) inhibitor developed as an anti-inflammatory agent. Severe abnormalities in hepatic function were reported in Japanese clinical trials [28]. Although the thiophene is not directly implicated in these findings, the ready activation of this system to potential reactive metabolites may be suggestive of the involvement of this function. [Pg.113]

Figure 8.9 Prostaglandins and leukotrienes are potent eicosanoid lipid mediators, derived from phospholipase-released arachidonic acids, that are involved in numerous homeostatic biological functions and inflammation. They are generated by cyclooxygenase isozymes and 5-lipoxygenase, respectively, and their biosynthesis and pharmacological actions are inhibited by clinically relevant nonsteroidal anti-inflammatory drugs. Figure 8.9 Prostaglandins and leukotrienes are potent eicosanoid lipid mediators, derived from phospholipase-released arachidonic acids, that are involved in numerous homeostatic biological functions and inflammation. They are generated by cyclooxygenase isozymes and 5-lipoxygenase, respectively, and their biosynthesis and pharmacological actions are inhibited by clinically relevant nonsteroidal anti-inflammatory drugs.
Some polyphenols inhibit platelet aggregation reducing the risk of thrombosis [171-173]. This effect may be due to a series of interaction of flavonoids in different biochemical pathways, such as by inhibition of cyclooxygenase and lipoxygenase, that are involved in the arachidonic acid metabolism in the platelets, or by inhibition of the formation of tromboxane and of the receptor function of the same [173-176]. Regular consumption of wine, tea and chocolate has been associated to the reduction of platelet aggregation, cardio-vascular diseases and thrombosis [171,177-179]. [Pg.297]

Thromboxanes, like prostaglandins, contain a ring of five or six atoms the pathway from arachidonate to these two classes of compounds is sometimes called the cyclic pathway, to distinguish it from the linear pathway that leads from arachidonate to the leukotrienes, which are linear compounds (Fig. 21-16). Leukotriene synthesis begins with the action of several lipoxygenases that catalyze the incorporation of molecular oxygen into arachidonate. These enzymes, found in leukocytes and in heart, brain, lung, and spleen, are mixed-function oxidases that use cytochrome P-450 (Box 21-1). The various leukotrienes differ in the position of the peroxide... [Pg.800]

Sloane, D.L. 1996. Exploring the structure and function of mammalian lipoxygenases by site-directed mutagenesis. In Lipoxygenase and Lipoxygenase Pathway Enzymes (G.J. Piazza, ed.) pp. 57-79. AOCS Press, Champaign, 111. [Pg.418]


See other pages where Lipoxygenase, function is mentioned: [Pg.126]    [Pg.196]    [Pg.26]    [Pg.90]    [Pg.91]    [Pg.219]    [Pg.270]    [Pg.250]    [Pg.233]    [Pg.127]    [Pg.134]    [Pg.168]    [Pg.323]    [Pg.121]    [Pg.755]    [Pg.166]    [Pg.105]    [Pg.30]    [Pg.34]    [Pg.256]    [Pg.87]    [Pg.87]    [Pg.218]    [Pg.99]    [Pg.159]    [Pg.193]    [Pg.647]    [Pg.315]    [Pg.109]    [Pg.407]    [Pg.1327]    [Pg.756]    [Pg.133]    [Pg.23]    [Pg.278]    [Pg.149]   
See also in sourсe #XX -- [ Pg.192 ]




SEARCH



Lipoxygenase

Lipoxygenase Lipoxygenases

Lipoxygenases

© 2024 chempedia.info