Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Linear viscoelasticity storage compliance

Other types of linear viscoelastic experiments may be used. Dynamic shear compliance measurements provide the storage and loss compliances J (co) and J"(co). An equation analogous to Eq.(3.12) is available for determining the initial modulus from J"(co) ... [Pg.25]

The linear viscoelastic properties of all samples were characterized by dynamic shear measurements in the parallel-plate geometry. Experimental details have been previously published [9]. Using time-temperature equivalence, master curves for the storage and loss moduli were obtained. Fig. 1 shows the master curves at 140°C for the relaxation spectra and Table 3 gives the values of zero-shear viscosities, steady-state compliances and weight-average relaxation times at the same temperature. [Pg.66]

In this section, we present the molecular theory for the linear dynamic viscoelasticity of miscible polymer blends by Han and Kim (1989a, 1989b), which is based on the concept of the tube model presented in Chapter 4. Specifically, the reptation of two primitive chains of dissimilar chemical structures under an external potential will be considered, and the expressions for the linear viscoelastic properties of miscible polymer blends will be presented. We will first present the expressions for zero-shear viscosity ob. dynamic storage and loss moduli G co) and G " co), and steady-state compliance J° for binary miscible blends of monodisperse, entangled flexible homopolymers and then consider the effect of polydispersity. There are a few other molecular theories reported... [Pg.273]

In Chapter 4 it was explained that the linear elastic behavior of molten polymers has a strong and detailed dependency on molecular structure. In this chapter, we will review what is known about how molecular structure affects linear viscoelastic properties such as the zero-shear viscosity, the steady-state compliance, and the storage and loss moduli. For linear polymers, linear properties are a rich source of information about molecular structure, rivaling more elaborate techniques such as GPC and NMR. Experiments in the linear regime can also provide information about long-chain branching but are insufficient by themselves and must be supplemented by nonlinear properties, particularly those describing the response to an extensional flow. The experimental techniques and material functions of nonlinear viscoelasticity are described in Chapter 10. [Pg.131]

The zero-shear viscoelastic properties of concentrated polymer solutions or polymer melts are typically defined by two parameters the zero-shear viscosity (f]o) and the zero-shear recovery compliance (/ ). The former is a measure of the dissipation of energy, while the latter is a measure of energy storage. For model polymers, the infiuence of branching is best established for the zero-shear viscosity. When the branch length is short or the concentration of polymer is low (i.e., for solution rheology), it is found that the zero-shear viscosity of the branched polymer is lower than that of the linear. This has been attributed to the smaller mean-square radius of the branched chains and has led to the following relation... [Pg.256]

As the stress-strain linearity limit of most thermoplastics and their blends is very low, nonlinear viscoelastic behavior of heterogeneous blends needs to be considered in most cases. The nonlinearity is at least partly ascribed to the fact that the strain-induced expansion of materials with Poisson s ratio smaller than 0.5 markedly enhances the fractional free volume (240). Consequently, the retardation times are perpetually shortened in the course of a tensile creep in proportion to the achieved strain. Thus, knowledge of creep behavior over appropriate intervals of time and stress is of great practical importance. The handling and storage of the compliance curves D (t,a) in a graphical form is impractical, so numerous empirical functions have been proposed (241), eg. [Pg.6278]


See other pages where Linear viscoelasticity storage compliance is mentioned: [Pg.252]    [Pg.201]    [Pg.462]    [Pg.61]    [Pg.320]    [Pg.126]    [Pg.107]    [Pg.531]    [Pg.410]    [Pg.48]    [Pg.461]    [Pg.38]   
See also in sourсe #XX -- [ Pg.117 ]




SEARCH



Storage compliance

Viscoelastic storage

© 2024 chempedia.info