Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Light electron excitation

Heterogeneous photochemical reactions fall in the general category of photochemistry—often specific adsorbate excited states are involved (see, e.g.. Ref. 318.) Photodissociation processes may lead to reactive radical or other species electronic excited states may be produced that have their own chemistry so that there is specificity of reaction. The term photocatalysis has been used but can be stigmatized as an oxymoron light cannot be a catalyst—it is not recovered unchanged. [Pg.738]

Classic examples are the spontaneous emission of light or spontaneous radioactive decay. In chemistry, an important class of monomolecular reactions is the predissociation of metastable (excited) species. An example is the fonnation of oxygen atoms in the upper atmosphere by predissociation of electronically excited O2 molecules [12, 13 and 14] ... [Pg.765]

Another example of a teclmique for detecting absorption of laser radiation in gaseous samples is to use multiphoton ionization with mtense pulses of light. Once a molecule has been electronically excited, the excited state may absorb one or more additional photons until it is ionized. The electrons can be measured as a current generated across the cell, or can be counted individually by an electron multiplier this can be a very sensitive technique for detecting a small number of molecules excited. [Pg.1123]

So far we have exclusively discussed time-resolved absorption spectroscopy with visible femtosecond pulses. It has become recently feasible to perfomi time-resolved spectroscopy with femtosecond IR pulses. Flochstrasser and co-workers [M, 150. 151. 152. 153. 154. 155. 156 and 157] have worked out methods to employ IR pulses to monitor chemical reactions following electronic excitation by visible pump pulses these methods were applied in work on the light-initiated charge-transfer reactions that occur in the photosynthetic reaction centre [156. 157] and on the excited-state isomerization of tlie retinal pigment in bacteriorhodopsin [155]. Walker and co-workers [158] have recently used femtosecond IR spectroscopy to study vibrational dynamics associated with intramolecular charge transfer these studies are complementary to those perfomied by Barbara and co-workers [159. 160], in which ground-state RISRS wavepackets were monitored using a dynamic-absorption technique with visible pulses. [Pg.1982]

Interaction with light changes the quantum state a molecule is in, and in photochemistry this is an electronic excitation. As a result, the system will no longer be in an eigenstate of the Hamiltonian and this nonstationaiy state evolves, governed by the time-dependent Schrddinger equation... [Pg.251]

The reaction path shows how Xe and Clj react with electrons initially to form Xe cations. These react with Clj or Cl- to give electronically excited-state molecules XeCl, which emit light to return to ground-state XeCI. The latter are not stable and immediately dissociate to give xenon and chlorine. In such gas lasers, translational motion of the excited-state XeCl gives rise to some Doppler shifting in the laser light, so the emission line is not as sharp as it is in solid-state lasers. [Pg.130]

For electronically excited species, the emitted light can be used for spectroscopic purposes, as in fluorescence analysis. [Pg.387]

These collisions can be sufficiently energetic such that the gas molecules become electronically excited, and, as the excited atoms return to their ground state, they emit light. Thus, passage of electrons (an electric current) through a gas under the right conditions leads to the emission of light from the gas. [Pg.387]

The blue luminescence observed during cool flames is said to arise from electronically excited formaldehyde (60,69). The high energy required indicates radical— radical reactions are producing hot molecules. Quantum yields appear to be very low (10 to 10 ) (81). Cool flames never deposit carbon, in contrast to hot flames which emit much more intense, yellowish light and may deposit carbon (82). [Pg.340]

In principle, one molecule of a chemiluminescent reactant can react to form one electronically excited molecule, which in turn can emit one photon of light. Thus one mole of reactant can generate Avogadro s number of photons defined as one einstein (ein). Light yields can therefore be defined in the same terms as chemical product yields, in units of einsteins of light emitted per mole of chemiluminescent reactant. This is the chemiluminescence quantum yield which can be as high as 1 ein/mol or 100%. [Pg.262]

Photopolymerization. In many cases polymerization is initiated by ittadiation of a sensitizer with ultraviolet or visible light. The excited state of the sensitizer may dissociate directiy to form active free radicals, or it may first undergo a bimoleculat electron-transfer reaction, the products of which initiate polymerization (14). TriphenylaLkylborate salts of polymethines such as (23) ate photoinitiators of free-radical polymerization. The sensitivity of these salts throughout the entire visible spectral region is the result of an intra-ion pair electron-transfer reaction (101). [Pg.496]

When a molecule (A) absorbs a quantum of light it is activated to an electronically excited state A, after which a number of process may occur. These may be summarised as follows ... [Pg.144]

It can be assumed that in cycloadditions only one reactant is electronically excited, in view of the short lifetimes of excited species in solution and the consequently low probability of a collision between two excited molecules. Also, the cycloadditions are conducted with light of wavelengths above 2800 A... [Pg.346]

The enormous progress in the field of electroluminescent conjugated polymers has led to performances of oiganic light-emitting devices (LEDs) that are comparable and in some aspects superior to their inorganic counterparts 11). Quantum efficiencies in excess of 5% have been demonstrated [2] and show that a high fraction of the injected carriers in a polymeric electroluminescence (EL) device form electronic excitations which recombine radiatively. [Pg.167]

Electron excitation in a vacuum spectrograph should be tried as a way of obtaining high analytical-line intensity for the light elements. [Pg.222]


See other pages where Light electron excitation is mentioned: [Pg.271]    [Pg.202]    [Pg.271]    [Pg.202]    [Pg.310]    [Pg.310]    [Pg.1103]    [Pg.1249]    [Pg.2486]    [Pg.2492]    [Pg.2963]    [Pg.2998]    [Pg.3017]    [Pg.220]    [Pg.31]    [Pg.87]    [Pg.122]    [Pg.129]    [Pg.133]    [Pg.134]    [Pg.387]    [Pg.260]    [Pg.262]    [Pg.262]    [Pg.491]    [Pg.452]    [Pg.22]    [Pg.348]    [Pg.423]    [Pg.319]    [Pg.194]    [Pg.196]    [Pg.203]    [Pg.1125]    [Pg.431]    [Pg.402]    [Pg.170]    [Pg.343]   
See also in sourсe #XX -- [ Pg.370 ]




SEARCH



Electronic excited

Electronical excitation

Electronics, light

Electrons excitation

Electrons light

Electrons, excited

Excitation light

Light Absorption and Electronically-excited States

Light excited electrons

MO model, electronic excitation light absorption

© 2024 chempedia.info