Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Triplet state lifetime

S-Thiobenzoate Derivatives These compounds exhibit an a-cleavage process (10.24) whose efficiency is dependent on the presence of a benzoyl moiety or a benzophenone moiety as the absorbing chromophore [43,44], Usual benzoyl skeleton-based derivatives work according to a generally efficient cleavage (short triplet state —2 ns) whereas benzophenone derivatives have a long lifetime triplet state (-500-700 ns). [Pg.363]

The expression for is only really valid for a spherical molecule ellipsoids and other shapes have multiple rotational relaxation times (Tanford, 1961, should be consulted for details). When considering the volume, for instance of a protein molecule, one also has to take into account the partial specific volume (about 0.75) and the hydration (about 30%). With these provisos dimensions of a molecule with a fixed chromophore can be estimated when the viscosity of the medium is known. Conversely, if the size of the molecule is known, the local viscosity, say in a membrane, can be estimated. However, in membrane systems rotations are on the microsecond time scale and long lifetime triplet state chromophores rather than fluorescence have to be used (see review by Cherry, 1992). [Pg.293]

Triplet State lifetimes. Triplet State Energy levels and Rate Constants H/ 179... [Pg.213]

Typical singlet lifetimes are measured in nanoseconds while triplet lifetimes of organic molecules in rigid solutions are usually measured in milliseconds or even seconds. In liquid media where drfifiision is rapid the triplet states are usually quenched, often by tire nearly iibiqitoiis molecular oxygen. Because of that, phosphorescence is seldom observed in liquid solutions. In the spectroscopy of molecules the tenn fluorescence is now usually used to refer to emission from an excited singlet state and phosphorescence to emission from a triplet state, regardless of the actual lifetimes. [Pg.1143]

Figure C 1.5.10. Nonnalized fluorescence intensity correlation function for a single terrylene molecule in p-terjDhenyl at 2 K. The solid line is tire tlieoretical curve. Regions of deviation from tire long-time value of unity due to photon antibunching (the finite lifetime of tire excited singlet state), Rabi oscillations (absorjDtion-stimulated emission cycles driven by tire laser field) and photon bunching (dark periods caused by intersystem crossing to tire triplet state) are indicated. Reproduced witli pennission from Plakhotnik et al [66], adapted from [118]. Figure C 1.5.10. Nonnalized fluorescence intensity correlation function for a single terrylene molecule in p-terjDhenyl at 2 K. The solid line is tire tlieoretical curve. Regions of deviation from tire long-time value of unity due to photon antibunching (the finite lifetime of tire excited singlet state), Rabi oscillations (absorjDtion-stimulated emission cycles driven by tire laser field) and photon bunching (dark periods caused by intersystem crossing to tire triplet state) are indicated. Reproduced witli pennission from Plakhotnik et al [66], adapted from [118].
Because of this spin selection rule, atoms which get into the lowest triplet state, 2 Si, do not easily revert to the ground 1 state the transition is forbidden by both the orbital and spin selection rules. The lowest triplet state is therefore metastable. In a typical discharge it has a lifetime of the order of 1 ms. [Pg.221]

Photochromism Based on Triplet Formation. Upon absorption of light, many polycycHc aromatic hydrocarbons and their heterocycHc analogues undergo transitions to their triplet state which has an absorption spectmm different from that of the ground state (24). In rigid glasses and some plastics, the triplet state, which may absorb in the visible, has a lifetime of up to 20 seconds. [Pg.163]

The triplet-state energy level of oxytetracycline, the excitation maximum (412 nm), lifetimes of Eu-OxTc (58 p.s) and Eu-OxTc-Cit (158 p.s), were determined. A 25-fold luminescence enhancement at 615 nm occurs upon addition of citrate within a short 5-min incubation time at neutral pH. It s accompanied by a threefold increase of the luminescence decay time. The optimal conditions for determination of OxTc are equal concentrations of Eu(III) and citrate (C = T lO mol-E ), pH 7.2. Eor determination of citrate, the optimal conditions concentrations of Eu(HI) and OxTc are 1 0,5 (Cg = MO Huol-E-i, = 5-10-HuohE-i) at pH 7.2. [Pg.391]

Nanosecond flash photolysis of 1,4-dinitro-naphthalene in aerated and deaerated solvents showed a transient species with absorption maximum at 545nm. The maximum of the transient absorption was independent of solvent polarity and its lifetime seemed to be a function of the hydrogen donor efficiency of the solvent. The transient absorption was attributed to the lowest excited triplet state of 1,4-dinitronaphthalene. Based on spectroscopic and kinetic evidence, the triplet state of 1,4-dinitronaphthalene behaved as an n - Tt state in nonpolar solvents,... [Pg.738]

The lowest-level, excited triplet state of U022+ has an unusually long lifetime of 10, which is ample time for reaction with a reductant that is either associated with the U022+ ion or that is an unassociated species in the same solution. One... [Pg.265]

Emission of light due to an allowed electronic transition between excited and ground states having the same spin multiplicity, usually singlet. Lifetimes for such transitions are typically around 10 s. Originally it was believed that the onset of fluorescence was instantaneous (within 10 to lO-" s) with the onset of radiation but the discovery of delayed fluorescence (16), which arises from thermal excitation from the lowest triplet state to the first excited singlet state and has a lifetime comparable to that for phosphorescence, makes this an invalid criterion. Specialized terms such as photoluminescence, cathodoluminescence, anodoluminescence, radioluminescence, and Xray fluorescence sometimes are used to indicate the type of exciting radiation. [Pg.5]

Jablonski (48-49) developed a theory in 1935 in which he presented the now standard Jablonski diagram" of singlet and triplet state energy levels that is used to explain excitation and emission processes in luminescence. He also related the fluorescence lifetimes of the perpendicular and parallel polarization components of emission to the fluorophore emission lifetime and rate of rotation. In the same year, Szymanowski (50) measured apparent lifetimes for the perpendicular and parallel polarization components of fluorescein in viscous solutions with a phase fluorometer. It was shown later by Spencer and Weber (51) that phase shift methods do not give correct values for polarized lifetimes because the theory does not include the dependence on modulation frequency. [Pg.9]

Sodium Acetate-Sodium Chloride Mixtures. Ramasamy and Hurtubise (12) obtained RTF and RTF quantum yields, triplet formation efficiency, and phosphorescence lifetime values for the anion of p-aminobenzoic acid adsorbed on sodium acetate and on several sodium acetate-sodium chloride mixtures. Rate constants were calculated for phosphorescence and for radiationless transition from the triplet state. The results showed that several factors were important for maximum RTF from the anion of p-aminobenzoic acid. One of the most important of these was how efficiently the matrix was packed with sodium acetate molecules. A similar conclusion was found for RTF however, the RTF quantum yield increased more dramatically than the RTF quantum yield. [Pg.163]

In this case the excited molecules produced on interaction with radiation undergo spin reversal to yield a triplet state with a much longer lifetime than that of the singlet excited state. One or more jt-bonds are broken in the triplet state since one of the n-electrons affected is in an antibonding n molecular orbital. This means that the o-bond is free to rotate and cis and trans isomers can be formed next to each other on recombination of the double bond. [Pg.17]

A-T ax are the spectral maximum of UV-Vis absorption, emission, and triplet state absorption, respectively, is the molar extinction coefficient, ta and Tt, Oa and r, s and Et, are the lifetime, quantum yield, and energy content of the singlet and triplet excited states of RF, respectively. [Pg.11]

Figure lb shows the transient absorption spectra of RF (i.e. the difference between the ground singlet and excited triplet states) obtained by laser-flash photolysis using a Nd Yag pulsed laser operating at 355 nm (10 ns pulse width) as excitation source. At short times after the laser pulse, the transient spectrum shows the characteristic absorption of the lowest vibrational triplet state transitions (0 <— 0) and (1 <— 0) at approximately 715 and 660 nm, respectively. In the absence of GA, the initial triplet state decays with a lifetime around 27 ps in deoxygenated solutions by dismutation reaction to form semi oxidized and semi reduced forms with characteristic absorption bands at 360 nm and 500-600 nm and (Melo et al., 1999). However, in the presence of GA, the SRF is efficiently quenched by the gum with a bimolecular rate constant = 1.6x10 M-is-i calculated... [Pg.13]

Magnetic field effects on the reaction kinetics or yields of photochemical reactions in the condensed phase have been studied [20-23]. They have proved powerful for verifying the mechanism of photochemical reactions including triplet states. Previously, we obtained photogenerated triplet biradicals of donor-acceptor linked compounds, and found that the lifetimes of the biradicals were remarkably extended in the presence of magnetic fields up to 1T [24]. It has been reported that Cgo and its derivatives form optically transparent microscopic clusters in mixed solvents [25,26]. The clustering behavior of fullerene (C o) is mainly associated with the strong three-dimensional hydrophobic interactions between the C o units. Photoinduced... [Pg.259]

Table 5.6 Properties of three typical photoredox-active molecules. bpy denotes 2,2 bipyridine, TMPP is tetra N-methylpyridine porphyrin Amax is the wavelength of the absorption maximum, e is the extinction coefficient at Amax, cpT is the quantum yield of the formation of the excited triplet state, r0 is its lifetime, and E0 are standard redox potentials... Table 5.6 Properties of three typical photoredox-active molecules. bpy denotes 2,2 bipyridine, TMPP is tetra N-methylpyridine porphyrin Amax is the wavelength of the absorption maximum, e is the extinction coefficient at Amax, cpT is the quantum yield of the formation of the excited triplet state, r0 is its lifetime, and E0 are standard redox potentials...

See other pages where Triplet state lifetime is mentioned: [Pg.28]    [Pg.447]    [Pg.296]    [Pg.28]    [Pg.447]    [Pg.296]    [Pg.1143]    [Pg.1610]    [Pg.2496]    [Pg.300]    [Pg.319]    [Pg.435]    [Pg.482]    [Pg.22]    [Pg.738]    [Pg.1070]    [Pg.78]    [Pg.245]    [Pg.317]    [Pg.317]    [Pg.158]    [Pg.153]    [Pg.155]    [Pg.162]    [Pg.363]    [Pg.141]    [Pg.1070]    [Pg.157]    [Pg.194]    [Pg.143]    [Pg.296]    [Pg.310]    [Pg.281]    [Pg.174]    [Pg.73]   
See also in sourсe #XX -- [ Pg.46 ]

See also in sourсe #XX -- [ Pg.46 ]




SEARCH



State lifetimes

Triplet state

© 2024 chempedia.info