Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

LCVD film plasma polymer type

The significance of LCVD is in the unique aspect of creating a new surface state that is bonded to the substrate material particularly polymeric material. The new surface state can be tailored to be surface dynamically stable. However, caution should be made that not all LCVD films fit in this category. Appropriately executed LCVD to lay down a type A plasma polymer layer creates surface dynamically stable surface state. In the domain, in which surface dynamic instability is a serious concern in the use of materials, a nanofilm by LCVD is quite effective in providing a surface dynamic stability, and other methods do not fare well in comparison to LCVD. [Pg.504]

Because of high packing density of type A plasma polymer (LCVD film), the segmental mobility discussed above section is minimal, and the surface of type A LCVD film is anticipated to be imperturbable. However, there are some observations... [Pg.618]

The role of the second plasma treatment by HFE or Ar seems to be the removal of type B plasma polymer of TMS from the top surface region or possibly converting the type B plasma polymer to type A plasma polymer. Electron spin resonance (ESR) data (described in Chapter 6) indicate that the number of Si-based dangling bonds decreases by these second plasma treatments. The weight loss observed with some plasma polymers and the ESR data for TMS film suggest that type B plasma polymer in the top surface region of an LCVD film could be up to nearly 30% of the... [Pg.620]

Luminous vapor treatment without depositing film (LGT) could be used to modify the surface characteristics of membranes. Type B plasma polymer also could be used for this purpose. General schemes of membrane application of LGT and LCVD are schematically depicted in Figures 34.2 and 34.3, respectively [2]. Since the luminous gas interacts with the substrate material, the selection of the membrane material and the gas to be used in these possible schemes is important, and it should not be considered that any combinations of gas and material could be used in any mode of application. [Pg.746]

The three unique and important features of type A LCVD nanofilm—imperturbable surface (Chapter 29), nanoscale molecular sieve (Chapter 34), and new surface state of material (Chapter 24) make LCVD coating an ideal tool in preparation of biomaterials. It should be reiterated that these three features of LCVD films are limited to type A plasma polymers described in Chapter 8, and type B plasma polymers should be excluded in LCVD coatings for biomaterials based on the concept of imperturbable surface. The particularly important aspect is that the LCVD nanofilm becomes the new surface state of the substrate material, i.e., it is not just a coating placed on the surface. The first and second features describe the nature of the new surface state. [Pg.778]


See other pages where LCVD film plasma polymer type is mentioned: [Pg.221]    [Pg.752]    [Pg.765]    [Pg.748]   
See also in sourсe #XX -- [ Pg.618 , Pg.619 ]




SEARCH



LCVD film

Plasma film

Plasma polymers

Plasma—polymer films

Polymers types

© 2024 chempedia.info