Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Layers lithium alloys

It is now well established that in lithium batteries (including lithium-ion batteries) containing either liquid or polymer electrolytes, the anode is always covered by a passivating layer called the SEI. However, the chemical and electrochemical formation reactions and properties of this layer are as yet not well understood. In this section we discuss the electrode surface and SEI characterizations, film formation reactions (chemical and electrochemical), and other phenomena taking place at the lithium or lithium-alloy anode, and at the Li. C6 anode/electrolyte interface in both liquid and polymer-electrolyte batteries. We focus on the lithium anode but the theoretical considerations are common to all alkali-metal anodes. We address also the initial electrochemical formation steps of the SEI, the role of the solvated-electron rate constant in the selection of SEI-building materials (precursors), and the correlation between SEI properties and battery quality and performance. [Pg.420]

Recent encouraging results have been reported by Carter et al., who have obtained room temperature lifetimes in excess of 7000 h for encapsulated ITO/PPV/Ca devices at current densities of 60 mA/cm2.37 The polymer used was the PPV copolymer shown in Fig. 5.23, where the conjugation is interrupted by nonconjugated a -acetyloxy-/ -xylylene units. The efficiency of these devices was typically 0.02 lm/W. Devices operating at 80° C had lifetimes in excess of 1100 h. Carter et al., also reported devices based on the same emissive polymer giving efficiencies between 0.5 and 2 lm/W. These devices used a layer of conducting polymer (polyethylenedioxythiophene/polystyrene sulfonate) between the ITO and the PPV, and a sputtered aluminum/lithium alloy as the cathode. The devices... [Pg.149]

Xianming W, Nishina T, Uchida 1 (2002) Lithium alloy formation at bismuth thin layer electrode and its kinetics in propylene carbonate electrolyte. J Power Sour 104 90-96... [Pg.227]

Matsuda and co-workers [39-41] proposed the addition of some inorganic ions, such as Mg2+, Zn2+, In3+, Ga3+, Al3+,and Sn2+, to PC-based electrolytes in order to improve cycle life. They observed the formation of thin layers of Li/M alloys on the electrode surface during the cathodic deposition of lithium on charge-discharge cycling. The resulting films suppress the dendritic deposition of lithium [40, 41]. The Li/Al layer exhibited low and stable resistance in the electrolyte, but the... [Pg.426]

To a stirred solution of 45g 3,5-dimethoxybenzoyl chloride and 17.4g thiophen in 300 ml benzene at 0° C, add dropwise 10.5g freshly distilled stannic chloride. Stir one hour at room temperature and add 200 ml 3% aqueous HC1. Separate the benzene layer and wash the aqueous layer with benzene. Dry and evaporate in vacuum the combined benzene layers and distill the red residue (250° C bath/4.5) to get 45g 2-(3,5-dimethoxybenzoyl) thiophen(I). Recrystallize from petroleum ether. Add a solution of 21 g AICI3 in 160 ml ether to a stirred suspension of 6.1 g lithium aluminum hydride in 140 ml ether. After 5 minutes add a solution of 39g(I) in 300 ml ether at a rate giving a gentle reflux. Reflux and stir 1 hour cool in an ice bath and treat dropwise with 50 ml water, then 50 ml 6N aqueous sulfuric acid. Separate the layers, extract the aqueous layer with 3X100 ml ether and dry, evaporate in vacuum the combined ether layers. Can distill the residue (230° C bath/5mm) to get 27g oily 2-(3,5-dimethoxybenzyl) thiophen (II). Recrystallize from petroleum ether. Reflux a solution of 5g (II) in 700 ml ethanol with W-7 Raney Nickel prepared from Ni-Al alloy (see Org. Synthesis Coll. Vol 111,176(1955)) for 6 hours. Filter, evaporate in vacuum and can distill (140/0.01) to get about 2.2g oily olivetol dimethyl ether which can be reduced to olivetol as described elsewhere here. -... [Pg.45]

Difluorides such as PbF2 with the fluorite structure exhibit fast ion conduction due to facile F ion transport (Section 6.4.5). An interesting structure showing Li" conduction is that of LijN (Rabenau, 1978). Conduction is two-dimensional. Cooperative basal plane excitations involving the rotation of six Li ions by 30 about a common ion to edge positions (positions midway between ions in the Li2N layer) seem to be responsible for conduction in this nitride. In the fluorite structure, a rotation by 45 of a single cube of F ions seems to be involved. The Zintl alloy LiAl is also a lithium-ion conductor. [Pg.414]

There are reports that the surface chemistry of Li alloys is indeed largely modified, compared with Li metal electrodes [303], It appears that they are less reactive with solution species, as is expected. The morphology of Li deposition on Li alloys may also be largely modified and smooth, compared with Li deposition on Li substrates [302,304], A critical point in the use of Li alloys as battery anodes is the lithium diffusion rates into the alloys. Typical values of Li diffusion coefficient into alloys are 3-LiAl —> 7 16 9 cm2/s [305], Li44Sn —> 2 10 9 cm2/s [306], LiCd and LiZn —> 1010 cm2/s [307], It should be emphasized that it is very difficult to obtain reliable values of Li diffusion coefficient into Li alloys, and thus the above values provide only a rough approximation for diffusion rates of Li into alloys. However, it is clear that Li diffusion into Li alloys is a slow process, and thus is the rate-limiting process of these electrodes. Li deposition of rates above that of Li diffusion leads to the formation of a bulk metallic lithium layer on the alloy s surface which may be accompanied by mas-... [Pg.367]


See other pages where Layers lithium alloys is mentioned: [Pg.615]    [Pg.615]    [Pg.443]    [Pg.448]    [Pg.452]    [Pg.607]    [Pg.499]    [Pg.381]    [Pg.151]    [Pg.243]    [Pg.70]    [Pg.443]    [Pg.448]    [Pg.540]    [Pg.53]    [Pg.313]    [Pg.508]    [Pg.514]    [Pg.931]    [Pg.72]    [Pg.144]    [Pg.164]    [Pg.32]    [Pg.1754]    [Pg.198]    [Pg.324]    [Pg.324]    [Pg.331]    [Pg.531]    [Pg.143]    [Pg.132]    [Pg.134]    [Pg.1835]    [Pg.1754]    [Pg.132]    [Pg.281]    [Pg.305]    [Pg.387]    [Pg.180]    [Pg.311]   
See also in sourсe #XX -- [ Pg.360 ]




SEARCH



Lithium alloy

© 2024 chempedia.info