Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lattice function

Show that the inverse Fourier transform of the function Z(s) defined by (C. 10) and (C.l 1) indeed leads to the lattice function z(r) given by (C.5), ignoring the exact value of the proportionality constant. [Pg.315]

For the determination of the atomic form factor F two experimental methods present themselves. In the one, which has been most widely used, the X-rays fall upon a crystal. Every atom in the crystal lattice functions as a source of scattered waves which interfere with each other. If the wavelength A of the X-rays, the distance a between successive members of a family of lattice planes and the angle of incidence (f) of the X-rays, measured from these lattice planes, obey the relation of Bragg... [Pg.15]

There is, of course, a mass of rather direct evidence on orientation at the liquid-vapor interface, much of which is at least implicit in this chapter and in Chapter IV. The methods of statistical mechanics are applicable to the calculation of surface orientation of assymmetric molecules, usually by introducing an angular dependence to the inter-molecular potential function (see Refs. 67, 68, 77 as examples). Widom has applied a mean-held approximation to a lattice model to predict the tendency of AB molecules to adsorb and orient perpendicular to the interface between phases of AA and BB [78]. In the case of water, a molecular dynamics calculation concluded that the surface dipole density corresponded to a tendency for surface-OH groups to point toward the vapor phase [79]. [Pg.65]

S. Chains in the S phase are also oriented normal to the surface, yet the unit cell is rectangular possibly because of restricted rotation. This structure is characterized as the smectic E or herringbone phase. Schofield and Rice [204] applied a lattice density functional theory to describe the second-order rotator (LS)-heiTingbone (S) phase transition. [Pg.134]

The second model is a quantum mechanical one where free electrons are contained in a box whose sides correspond to the surfaces of the metal. The wave functions for the standing waves inside the box yield permissible states essentially independent of the lattice type. The kinetic energy corresponding to the rejected states leads to the surface energy in fair agreement with experimental estimates [86, 87],... [Pg.270]

Small metal clusters are also of interest because of their importance in catalysis. Despite the fact that small clusters should consist of mostly surface atoms, measurement of the photon ionization threshold for Hg clusters suggest that a transition from van der Waals to metallic properties occurs in the range of 20-70 atoms per cluster [88] and near-bulk magnetic properties are expected for Ni, Pd, and Pt clusters of only 13 atoms [89] Theoretical calculations on Sin and other semiconductors predict that the stmcture reflects the bulk lattice for 1000 atoms but the bulk electronic wave functions are not obtained [90]. Bartell and co-workers [91] study beams of molecular clusters with electron dirfraction and molecular dynamics simulations and find new phases not observed in the bulk. Bulk models appear to be valid for their clusters of several thousand atoms (see Section IX-3). [Pg.270]

Density functional theory from statistical mechanics is a means to describe the thermodynamics of the solid phase with information about the fluid [17-19]. In density functional theory, one makes an ansatz about the structure of the solid, usually describing the particle positions by Gaussian distributions around their lattice sites. The free... [Pg.334]

Various functional forms for / have been proposed either as a result of empirical observation or in terms of specific models. A particularly important example of the latter is that known as the Langmuir adsorption equation [2]. By analogy with the derivation for gas adsorption (see Section XVII-3), the Langmuir model assumes the surface to consist of adsorption sites, each having an area a. All adsorbed species interact only with a site and not with each other, and adsorption is thus limited to a monolayer. Related lattice models reduce to the Langmuir model under these assumptions [3,4]. In the case of adsorption from solution, however, it seems more plausible to consider an alternative phrasing of the model. Adsorption is still limited to a monolayer, but this layer is now regarded as an ideal two-dimensional solution of equal-size solute and solvent molecules of area a. Thus lateral interactions, absent in the site picture, cancel out in the ideal solution however, in the first version is a properly of the solid lattice, while in the second it is a properly of the adsorbed species. Both models attribute differences in adsorption behavior entirely to differences in adsorbate-solid interactions. Both present adsorption as a competition between solute and solvent. [Pg.391]

The integrand in this expression will have a large value at a point r if p(r) and p(r+s) are both large, and P s) will be large if this condition is satisfied systematically over all space. It is therefore a self- or autocorrelation fiinction of p(r). If p(r) is periodic, as m a crystal, F(s) will also be periodic, with a large peak when s is a vector of the lattice and also will have a peak when s is a vector between any two atomic positions. The fiinction F(s) is known as the Patterson function, after A L Patterson [14], who introduced its application to the problem of crystal structure detemiination. [Pg.1368]

The characteristic time of the tliree-pulse echo decay as a fimction of the waiting time T is much longer than the phase memory time T- (which governs the decay of a two-pulse echo as a function of x), since tlie phase infomiation is stored along the z-axis where it can only decay via spin-lattice relaxation processes or via spin diffusion. [Pg.1576]

Figure C 1.2.7. Superconducting transition temperature plotted as a function of the a lattice parameter for a variety of A Cgg phases [55]. Figure C 1.2.7. Superconducting transition temperature plotted as a function of the a lattice parameter for a variety of A Cgg phases [55].
Abstract. A smooth empirical potential is constructed for use in off-lattice protein folding studies. Our potential is a function of the amino acid labels and of the distances between the Ca atoms of a protein. The potential is a sum of smooth surface potential terms that model solvent interactions and of pair potentials that are functions of a distance, with a smooth cutoff at 12 Angstrom. Techniques include the use of a fully automatic and reliable estimator for smooth densities, of cluster analysis to group together amino acid pairs with similar distance distributions, and of quadratic progrmnming to find appropriate weights with which the various terms enter the total potential. For nine small test proteins, the new potential has local minima within 1.3-4.7A of the PDB geometry, with one exception that has an error of S.SA. [Pg.212]

Vgiec and Vxc represent the electron-nuclei, electron-electron and exchange-correlation dionals, respectively. The delta function is zero unless G = G, in which case it has lue of 1. There are two potential problems with the practical use of this equation for a croscopic lattice. First, the summation over G (a Fourier series) is in theory over an rite number of reciprocal lattice vectors. In addition, for a macroscropic lattice there effectively an infinite number of k points within the first Brillouin zone. Fortunately, e are practical solutions to both of these problems. [Pg.174]

Iditional importance is that the vibrational modes are dependent upon the reciprocal e vector k. As with calculations of the electronic structure of periodic lattices these cal-ions are usually performed by selecting a suitable set of points from within the Brillouin. For periodic solids it is necessary to take this periodicity into account the effect on the id-derivative matrix is that each element x] needs to be multiplied by the phase factor k-r y). A phonon dispersion curve indicates how the phonon frequencies vary over tlie luin zone, an example being shown in Figure 5.37. The phonon density of states is ariation in the number of frequencies as a function of frequency. A purely transverse ition is one where the displacement of the atoms is perpendicular to the direction of on of the wave in a pmely longitudinal vibration tlie atomic displacements are in the ition of the wave motion. Such motions can be observed in simple systems (e.g. those contain just one or two atoms per unit cell) but for general three-dimensional lattices of the vibrations are a mixture of transverse and longitudinal motions, the exceptions... [Pg.312]

Figure 8.1 The entropy of mixing (in units of R) as a function of mole fraction solute for ideal mixing and for the Flory-Huggins lattice model with n = 50, 100, and 500. Values are calculated in Example 8.1. Figure 8.1 The entropy of mixing (in units of R) as a function of mole fraction solute for ideal mixing and for the Flory-Huggins lattice model with n = 50, 100, and 500. Values are calculated in Example 8.1.
In this section and the last, we have examined the lattice model of the Flory-Huggins theory for general expressions relating AHj and ASj to the composition of the mixture. The separate components can therefore be put together to give an expression for AGj as a function of temperature and composition ... [Pg.524]


See other pages where Lattice function is mentioned: [Pg.96]    [Pg.372]    [Pg.1]    [Pg.3]    [Pg.4]    [Pg.9]    [Pg.68]    [Pg.160]    [Pg.184]    [Pg.301]    [Pg.31]    [Pg.536]    [Pg.96]    [Pg.372]    [Pg.1]    [Pg.3]    [Pg.4]    [Pg.9]    [Pg.68]    [Pg.160]    [Pg.184]    [Pg.301]    [Pg.31]    [Pg.536]    [Pg.267]    [Pg.267]    [Pg.335]    [Pg.400]    [Pg.643]    [Pg.1769]    [Pg.2365]    [Pg.2783]    [Pg.2931]    [Pg.445]    [Pg.498]    [Pg.160]    [Pg.163]    [Pg.164]    [Pg.166]    [Pg.166]    [Pg.175]    [Pg.324]    [Pg.442]    [Pg.642]    [Pg.32]   
See also in sourсe #XX -- [ Pg.301 ]




SEARCH



Calculation of Lattice-Gas Parameters by Density Functional Theory

Coincidence lattice correlation function

Excess Functions. Effect of Lattice Deformations

Lattice Function z(x)

Lattice density functional theory

Lattice functions, convolutions

Partition function lattice

Spin-lattice relaxation oxidized functional groups

© 2024 chempedia.info