Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lanthanides in oxidation

Lanthanides in oxidation state (III) form complexes with organic ligands with oxygen donor groups and some data for Eu(III) complexes are given in Table 11.24. [Pg.876]

The oxidation states of the lanthanides in oxides The combination of the lanthanide elements with oxygen results in a formal oxidation state of the metal atom that depends upon the chemical potential of oxygen and the different electronic conditions of the atoms within the compound. The oxidation state of the lanthanide atoms varies between (II), as in EuO, and (IV), as in CeOj. All the lanthanides exhibit the (III) oxidation state in their oxide systems, as in La203. Furthermore, mixed-valence states exist in the series between these extremes both as stoichiometric and as nonstoichiometric compounds. Hund s first rule is followed in the lanthanide series which explains the stability of oxidation states other than three. [Pg.416]

Cerium is strongly electropositive having a low ionization potential for the removal of the three most weakly bound electrons. The trivalent cerous ion [18923-26-7] Ce ", apart from its possible oxidation to Ce(IV), closely resembles, the other trivalent lanthanides in behavior. [Pg.367]

The redox behaviour of Th, Pa and U is of the kind expected for d-transition elements which is why, prior to the 1940s, these elements were commonly placed respectively in groups 4, 5 and 6 of the periodic table. Behaviour obviously like that of the lanthanides is not evident until the second half of the series. However, even the early actinides resemble the lanthanides in showing close similarities with each other and gradual variations in properties, providing comparisons are restricted to those properties which do not entail a change in oxidation state. The smooth variation with atomic number found for stability constants, for instance, is like that of the lanthanides rather than the d-transition elements, as is the smooth variation in ionic radii noted in Fig. 31.4. This last factor is responsible for the close similarity in the structures of many actinide and lanthanide compounds especially noticeable in the 4-3 oxidation state for which... [Pg.1266]

Instead of Bronsted acids, lanthanide triflates can be used to catalyze the reaction of indole with benzaldehyde (Eq. 7.7). The use of an ethanol/water system was found to be the best in terms of both yield and product isolation. The use of organic solvent such as chloroform resulted in oxidized byproducts.17... [Pg.204]

Shortly after the key mechanistic papers on rhodium-catalyzed hydroboration, Marks reported a hydroboration reaction catalyzed by lanthanide complexes that proceeds by a completely different mechanism.63 Simple lanthanide salts such as Sml3 were also shown to catalyze the hydroboration of a range of olefins.64 The mechanism for this reaction was found to be complex and unknown. As in other reactions catalyzed by lanthanides, it is proposed that the entire catalytic cycle takes place without any changes in oxidation state on the central metal. [Pg.842]

Consequently, in the early 1990s, interest in the direct processes decreased markedly, and the emphasis in research on CH4 conversion returned to the indirect processes giving synthesis gas (13). In 1990, Ashcroft et al. (13) reported some effective noble metal catalysts for the reaction about 90% conversion of methane and more than 90% selectivity to CO and H2 were achieved with a lanthanide ruthenium oxide catalyst (L2Ru207, where L = Pr, Eu, Gd, Dy, Yb or Lu) at a temperature of about 1048 K, atmospheric pressure, and a GHSV of 4 X 104 mL (mL catalyst)-1 h-1. This space velocity is much higher than that employed by Prettre et al. (3). Schmidt et al. (14-16) and Choudhary et al. (17) used even higher space velocities (with reactor residence times close to 10-3 s). [Pg.322]

Figure 5.8. Lanthanide Ln203 oxides (cubic cI80-Mn2O3 type, on the left side) and Pb alloys (LnPb3, cubic cP4-type, on the right). The trends of the lattice parameter and of the heat of formation are shown (see the text and notice the characteristic behaviour of Eu and Yb). A schematic representation of the energy difference between the divalent and trivalent states of an ytterbium compound is shown. Apromff represents the promotion energy from di- to trivalent Yb metal, A,//11, and Ar/Ynl are the formation enthalpies of a compound in the two cases in which there is no valence change on passing from the metal to the compound the same valence state (II or III) is maintained. Figure 5.8. Lanthanide Ln203 oxides (cubic cI80-Mn2O3 type, on the left side) and Pb alloys (LnPb3, cubic cP4-type, on the right). The trends of the lattice parameter and of the heat of formation are shown (see the text and notice the characteristic behaviour of Eu and Yb). A schematic representation of the energy difference between the divalent and trivalent states of an ytterbium compound is shown. Apromff represents the promotion energy from di- to trivalent Yb metal, A,//11, and Ar/Ynl are the formation enthalpies of a compound in the two cases in which there is no valence change on passing from the metal to the compound the same valence state (II or III) is maintained.
The ionic radii of the commonest oxidation states are presented in Table 2. There is evidence of an actinide contraction of ionic radii as the 5/ orbitals are filled and this echoes the well established lanthanide contraction of ionic radii as the 4/orbitals are filled. Actinides and lanthanides in the same oxidation state have similar ionic radii and these similarities in radii are obviously paralleled by similarities in chemical behaviour in those cases where the ionic radius is relevant, such as the thermodynamic properties observed for halide hydrolysis. [Pg.47]

The contraction of the actinides, as measuredby changes, with atomic number, of the unit cell volume of their compounds in oxidation states III, IV, and VI, exhibits the same tetrad effect as that observed in the corresponding lanthanides. [Pg.463]

The lanthanides in several complexes exhibit mixed (promiscuous) coordination numbers and geometries, similar to the presence of mixed oxidation states in a inorganic compound. We shall only discuss a few cases here to make the readers aware of this interesting situation. [Pg.141]

The oxalates obtained above, alternatively, are digested with sodium hydroxide converting the rare earth metals to hydroxides. Cerium forms a tetravalent hydroxide, Ce(OH)4, which is insoluble in dilute nitric acid. When dilute nitric acid is added to this rare earth hydroxide mixture, cerium(lV) hydroxide forms an insoluble basic nitrate, which is filtered out from the solution. Cerium also may be removed by several other procedures. One such method involves calcining rare earth hydroxides at 500°C in air. Cerium converts to tetravalent oxide, Ce02, while other lanthanides are oxidized to triva-lent oxides. The oxides are dissolved in moderately concentrated nitric acid. Ceric nitrate so formed and any remaining thorium nitrate present is now removed from the nitrate solution hy contact with tributyl pbospbate in a countercurrent. [Pg.599]

Dependent Band Model for Lanthanide Compounds and Conditions for Interconfiguration Fluctuations J. N Murrell The Potential Energy Surfaces of Polyatomic Molecules J-A-Duffy Optical Electron ativity and Nephelauxetic Effect in Oxide Systems Application to Conducting, Semi-Conducting and Insulating Metal Oxides... [Pg.147]

Complexes of Lanthanides in the Tetrapositive Oxidation State 39.2.12.1 Introduction... [Pg.1113]

Especially interesting in a discussion of radionuclide speciation is the behaviour of the transuranium elements neptunium, plutonium, americium and curium. These form part of the actinide series of elements which resemble the lanthanides in that electrons are progressively added to the 5f instead of the 4f orbital electron shell. The effective shielding of these 5f electrons is less than for the 4f electrons of the lanthanides and the differences in energy between adjacent shells is also smaller, with the result that the actinide elements tend to display more complex chemical properties than the lanthanides, especially in relation to their oxidation-reduction behaviour (Bagnall, 1972). The effect is especially noticeable in the case of uranium, neptunium and plutonium, the last of which has the unique feature that four oxidation states Pum, Pu, Puv and Pu are... [Pg.360]


See other pages where Lanthanides in oxidation is mentioned: [Pg.426]    [Pg.413]    [Pg.510]    [Pg.426]    [Pg.413]    [Pg.510]    [Pg.333]    [Pg.953]    [Pg.1242]    [Pg.1266]    [Pg.620]    [Pg.42]    [Pg.41]    [Pg.334]    [Pg.374]    [Pg.590]    [Pg.498]    [Pg.1]    [Pg.9]    [Pg.12]    [Pg.74]    [Pg.50]    [Pg.54]    [Pg.62]    [Pg.445]    [Pg.179]    [Pg.47]    [Pg.37]    [Pg.168]    [Pg.450]    [Pg.113]    [Pg.1059]    [Pg.1059]    [Pg.1109]    [Pg.322]    [Pg.347]    [Pg.334]   
See also in sourсe #XX -- [ Pg.89 ]




SEARCH



Lanthanide oxide

© 2024 chempedia.info