Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lanthanide iodides hydration

Ln-Halides. The complexation/solvation criteria is just one reason why lanthanide halides are the most common precursors in organolanthanide chemistry. In this evaluation, lanthanide iodides are often preferred to bromides and chlorides, however the former are more difficult to synthesize and are much more expensive [96f. Waterfree, solid Ln-halides are ionic substances with high melting points which immediately absorb water when exposed to air, forming hydrates (I > Br > Cl ). Therefore, they have to be handled under an inert gas atmosphere. The main use of the halides is for the production of pure metals [96]. Some methods of preparing Ln(III)-chlorides are summarized in Scheme IV [96],... [Pg.12]

The chlorides, bromides, nitrates, bromates, and perchlorate salts ate soluble in water and, when the aqueous solutions evaporate, precipitate as hydrated crystalline salts. The acetates, iodates, and iodides ate somewhat less soluble. The sulfates ate sparingly soluble and ate unique in that they have a negative solubitity trend with increasing temperature. The oxides, sulfides, fluorides, carbonates, oxalates, and phosphates ate insoluble in water. The oxalate, which is important in the recovery of lanthanides from solutions, can be calcined directly to the oxide. This procedure is used both in analytical and industrial apptications. [Pg.541]

Most ionic halides dissolve in water to give hydrated metal ions and halide ions. However, the lanthanide and actinide elements in the +3 and +4 oxidation states form fluorides insoluble in water. Fluorides of Li, Ca, Sr, and Ba also are sparingly soluble, the lithium compound being precipitated by ammonium fluoride. Lead gives a sparingly soluble salt PbCIF, which can be used for gravimetric determination of F . The chlorides, bromides, and iodides of Ag1, Cu1, Hg1, and Pbn are also quite insoluble. The solubility through a series of mainly ionic halides of a... [Pg.555]

Neodymium oxide was first isolated from a mixture of oxides called didymia. The elemeut ueodymium is the secoud most abuudaut lanthanide elemeut in the igneous rocks of Earth s crust. Hydrated neodymium(III) salts are reddish and anhydrous neodymium compounds are blue. The compounds neodymium(III) chloride, bromide, iodide, nitrate, perchlorate, and acetate are very soluble neodymium sulfate is somewhat soluble the fluoride, hydroxide, oxide, carbonate, oxalate, and phosphate compoimds are insoluble. [Pg.827]

The lanthanide and actinide halides remain an exceedingly active area of research since 1980 they have been cited in well over 2500 Chemical Abstracts references, with the majority relating to the lanthanides. Lanthanide and actinide halide chemistry has also been reviewed numerous times. The binary lanthanide chlorides, bromides, and iodides were reviewed in this series (Haschke 1979). In that review, which included trihalides (RX3), tetrahalides (RX4), and reduced halides (RX , n < 3), preparative procedures, structural interrelationships, and thermodynamic properties were discussed. Hydrated halides and mixed metal halides were discussed to a lesser extent. The synthesis of scandium, yttrium and the lanthanide trihalides, RX3, where X = F, Cl, Br, and I, with emphasis on the halide hydrates, solution chemistry, and aspects related to enthalpies of solution, were reviewed by Burgess and Kijowski (1981). The binary lanthanide fluorides and mixed fluoride systems, AF — RF3 and AFj — RF3, where A represents the group 1 and group 2 cations, were reviewed in a subsequent Handbook (Greis and Haschke 1982). That review emphasized the close relationship of the structures of these compounds to that of fluorite. [Pg.366]

The actinide ions in aqueous solution resemble the tripositive lanthanide ions in their precipitation reactions, allowing for differences in the redox properties of early members of the actinide series. The chloride, bromide, nitrate, bromate, and perchlorate anions form water-soluble salts, which can be isolated as hydrated solids by evaporation. The acetates, iodates, and iodides are somewhat less soluble in water. The sulfates are sparingly soluble in hot solutions, somewhat more soluble in the cold. Insoluble precipitates are formed with hydroxide, fluoride, carbonate, oxalate, and phosphate anions. Precipitates formed from aqueous solution are usually hydrated, and the preparation of anhydrous salts from the hydrates without formation of hydrolyzed species can only be accomplished with difficulty. The actinide(iv) ions resemble Ce(iv) in forming fluorides and oxalates insoluble even in acid solution. The nitrates, sulfates, perchlorates, and sulfides are all water-soluble. The iv state actinide ions form insoluble iodates and arsenates even in rather strong acid solution. The... [Pg.279]


See other pages where Lanthanide iodides hydration is mentioned: [Pg.115]    [Pg.394]    [Pg.74]    [Pg.462]    [Pg.4202]    [Pg.4212]    [Pg.4213]    [Pg.258]    [Pg.100]    [Pg.129]    [Pg.66]    [Pg.438]    [Pg.467]    [Pg.1087]    [Pg.4201]    [Pg.4211]    [Pg.4212]    [Pg.65]    [Pg.210]    [Pg.58]    [Pg.75]    [Pg.177]    [Pg.130]   
See also in sourсe #XX -- [ Pg.65 ]

See also in sourсe #XX -- [ Pg.65 ]




SEARCH



Iodide hydrated

Lanthanide iodides

Lanthanides hydrates

© 2024 chempedia.info