Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lanthanide halides divalent states

Tn reviewing the chemistry of the actinides as a group, the simplest approach is to consider each valence state separately. In the tervalent state, and such examples of the divalent state as are known, the actinides show similar chemical behavior to the lanthanides. Experimental diflB-culties with the terpositive actinides up to plutonium are considerable because of the ready oxidation of this state. Some correlation exists with the actinides in studies of the lanthanide tetrafluorides and fluoro complexes. For other compounds of the 4-valent actinides, protactinium shows almost as many similarities as dijSerences between thorium and the uranium-americium set thus investigating the complex forming properties of their halides has attracted attention. In the 5- and 6-valent states, the elements from uranium to americium show a considerable degree of chemical similarity. Protactinium (V) behaves in much the same way as these elements in the 5-valent state except for water, where its hydrolytic behavior is more reminiscent of niobium and tantalum. [Pg.1]

Homogeneous Catalysis Lanthanide Halides Organometallic Chemistry Fundamental Properties Tetravalent Chemisiry Inoiganic Tetravalent Chemistry Organometallic The Divalent State in Solid Rare Earth Metal Halides The Electronic Structure of the Lanthanides. [Pg.42]

The enthalpy of vaporization of the metals refers to the process Ln s) — LU(g). This has an influence in the stability of oxidation states of the lanthanides (see Variable Valency, The Divalent State in Solid Rare Earth Metal Halides, and Tetravalent Chemistry Inorganic) and the variation of AHvap across the series is shown in Figure 3. [Pg.45]

The study of coordination compounds of the lanthanides dates in any practical sense from around 1950, the period when ion-exchange methods were successfully applied to the problem of the separation of the individual lanthanides,131-133 a problem which had existed since 1794 when J. Gadolin prepared mixed rare earths from gadolinite, a lanthanide iron beryllium silicate. Until 1950, separation of the pure lanthanides had depended on tedious and inefficient multiple crystallizations or precipitations, which effectively prevented research on the chemical properties of the individual elements through lack of availability. However, well before 1950, many principal features of lanthanide chemistry were clearly recognized, such as the predominant trivalent state with some examples of divalency and tetravalency, ready formation of hydrated ions and their oxy salts, formation of complex halides,134 and the line-like nature of lanthanide spectra.135... [Pg.1068]

In the fused state, the straightforward method is to allow either the lanthanide metal or the alkaline earth metal to react with a melt of the alkaline earth halide and the lanthanide trihalide. This approach yields the desired divalent ions if inert containers are used. Satisfactory reduction has been obtained in molybdenum, tungsten, and tantalum. The... [Pg.52]


See other pages where Lanthanide halides divalent states is mentioned: [Pg.53]    [Pg.4209]    [Pg.8]    [Pg.4208]    [Pg.55]    [Pg.367]    [Pg.178]    [Pg.47]    [Pg.91]    [Pg.345]    [Pg.51]    [Pg.54]    [Pg.28]    [Pg.94]    [Pg.371]   
See also in sourсe #XX -- [ Pg.161 , Pg.162 , Pg.163 , Pg.164 , Pg.165 , Pg.166 , Pg.167 , Pg.168 , Pg.169 , Pg.170 , Pg.171 , Pg.172 ]




SEARCH



Divalent

Divalent halides

Divalent states halides

Divalents

Halides 1 state

Lanthanide halides

Lanthanide halides divalent

© 2024 chempedia.info