Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Langmuir system, equilibrium parameter

Ion exchange isotherms for PAN-KCoFC/Cs, KCoFC/Cs systems and PAN-zeolite 4A/Sr, zeolite 4A/Sr systems were obtained to evaluate the equilibrium parameters such as ion exchange capacity and equilibrium constant for kinetic calculations. The experimental data were modeled by Langmuir equation given by... [Pg.376]

Thomas (1944) has provided a general analytical solution for a non-linear Langmuir system with a pseudo second-order reaction kinetic law. The results, which are given in graphical form by Hiester and Vermeulen (1952), provide a means of assessing the importance of a mass transfer resistance in any system for which the rate constant and equilibrium parameters are... [Pg.154]

Again, these structural results do not depend on specific values of the equilibrium constant K and the parameters of the Langmuir isotherm a , hi, as was shown in the appendix of Ref. [11]. Further, it was shown that the same patterns of behavior will arise if the chemical reaction is taking place in the solid phase instead of the fluid phase. The latter is of particular interest in applications where the adsorbent acts simultaneously as a catalyst. Practical examples will be discussed in the next section the interested reader is also referred to Chapter 6 of this book. In this context it is worth noting that the structural properties in Fig. 5.9 depend crucially on the stoichiometry of the system, which will be also discussed in the next section. [Pg.166]

Figure 23 Chondrite-normalized abundances of REEs in representative harzburgites from the Oman ophiolite (symbols—whole-rock analyses), compared with numerical experiments of partial melting performed with the Plate Model of Vemieres et al. (1997), after Godard et al. (2000) (reproduced by permission of Elsevier from Earth Planet. Set Lett. 2000, 180, 133-148). Top melting without (a) and with (b) melt infiltration. Model (a) simulates continuous melting (Langmuir et al., 1977 Johnson and Dick, 1992), whereas in model (b) the molten peridotites are percolated by a melt of fixed, N-MORB composition. Model (b) is, therefore, comparable to the open-system melting model of Ozawa and Shimizu (1995). The numbers indicate olivine proportions (in percent) in residual peridotites. Bolder lines indicate the REE patterns of the less refractory peridotites. In model (a), the most refractory peridotite (76% olivine) is produced after 21.1% melt extraction. In model (b), the ratio of infiltrated melt to peridotite increases with melting degree, from 0.02 to 0.19. Bottom modification of the calculated REE patterns residual peridotites due to the presence of equilibrium, trapped melt. Models (c) and (d) show the effect of trapped melt on the most refractory peridotites of models (a) and (b), respectively. Bolder lines indicate the composition of residual peridotites without trapped melt. Numbers indicate the proportion of trapped melt (in percent). Model parameters... Figure 23 Chondrite-normalized abundances of REEs in representative harzburgites from the Oman ophiolite (symbols—whole-rock analyses), compared with numerical experiments of partial melting performed with the Plate Model of Vemieres et al. (1997), after Godard et al. (2000) (reproduced by permission of Elsevier from Earth Planet. Set Lett. 2000, 180, 133-148). Top melting without (a) and with (b) melt infiltration. Model (a) simulates continuous melting (Langmuir et al., 1977 Johnson and Dick, 1992), whereas in model (b) the molten peridotites are percolated by a melt of fixed, N-MORB composition. Model (b) is, therefore, comparable to the open-system melting model of Ozawa and Shimizu (1995). The numbers indicate olivine proportions (in percent) in residual peridotites. Bolder lines indicate the REE patterns of the less refractory peridotites. In model (a), the most refractory peridotite (76% olivine) is produced after 21.1% melt extraction. In model (b), the ratio of infiltrated melt to peridotite increases with melting degree, from 0.02 to 0.19. Bottom modification of the calculated REE patterns residual peridotites due to the presence of equilibrium, trapped melt. Models (c) and (d) show the effect of trapped melt on the most refractory peridotites of models (a) and (b), respectively. Bolder lines indicate the composition of residual peridotites without trapped melt. Numbers indicate the proportion of trapped melt (in percent). Model parameters...
A linear model predictive control law is retained in both cases because of its attracting characteristics such as its multivariable aspects and the possibility of taking into account hard constraints on inputs and inputs variations as well as soft constraints on outputs (constraint violation is authorized during a short period of time). To practise model predictive control, first a linear model of the process must be obtained off-line before applying the optimization strategy to calculate on-line the manipulated inputs. The model of the SMB is described in [8] with its parameters. It is based on the partial differential equation for the mass balance and a mass transfer equation between the liquid and the solid phase, plus an equilibrium law. The PDE equation is discretized as an equivalent system of mixers in series. A typical SMB is divided in four zones, each zone includes two columns and each column is composed of twenty mixers. A nonlinear Langmuir isotherm describes the binary equilibrium for each component between the adsorbent and the liquid phase. [Pg.332]

The study of a particular adsorption process requires the knowledge of equilibrium data and adsorption kinetics [4]. Equilibrium data are obtained firom adsorption isotherms and are used to evaluate the capacity of activated carbons to adsorb a particular molecule. They constitute the first experimental information that is generally used as a tool to discriminate among different activated carbons and thereby choose the most appropriate one for a particular application. Statistically, adsorption from dilute solutions is simple because the solvent can be interpreted as primitive, that is to say as a structureless continuum [3]. Therefore, all equations derived firom monolayer gas adsorption remain vafid. Some of these equations, such as the Langmuir and Dubinin—Astakhov, are widely used to determine the adsorption capacity of activated carbons. Batch equilibrium tests are often complemented by kinetics studies, to determine the external mass transfer resistance and the effective diffusion coefficient, and by dynamic column studies. These column studies are used to determine system size requirements, contact time, and carbon usage rates. These parameters can be obtained from the breakthrough curves. In this chapter, I shall deal mainly with equilibrium data in the adsorption of organic solutes. [Pg.654]

The parameters in the adsorption isotherms were estimated from the experimental equilibrium data using MATLAB Curve Fitting Toolbox. The comparison of experimental and estimated data by Langmuir, Freundlich, Redlich-Peterson and combined Langmuir-Freundlich models for the investigated systems are presented in Figures 1 to 3 for six investigated systems. [Pg.481]

For all investigated systems, the correlation coefficients were estimated. The values of the correlation coefficients were very high, near to 1. The best fit gives combined Langmuir-Freundlich isotherm for the most of equilibrium isotherms, but it contents three parameters. The lowest correlation coefficient has Freundlich isotherm. The investigator decides which of the proposed models will be chosen for further mathematical modeling of the adsorption process that is in accordance with the subsequent application in kinetic and dynamic studies. [Pg.482]

The main parameters describing the system, in addition to suspension concentration and specific surface area, are the concentration of adsorption sites on the solid surface and the equilibrium constants in the adsorption equations, provided Langmuir-type adsorption, i.e., only one type of adsorption centers with constant adsorption enthalpy, is assumed ... [Pg.728]


See other pages where Langmuir system, equilibrium parameter is mentioned: [Pg.78]    [Pg.162]    [Pg.163]    [Pg.174]    [Pg.175]    [Pg.40]    [Pg.109]    [Pg.33]    [Pg.126]    [Pg.129]    [Pg.157]    [Pg.160]    [Pg.370]    [Pg.166]    [Pg.477]    [Pg.688]    [Pg.454]    [Pg.384]    [Pg.197]    [Pg.372]    [Pg.278]    [Pg.86]    [Pg.10]    [Pg.150]    [Pg.84]    [Pg.213]    [Pg.234]    [Pg.77]   
See also in sourсe #XX -- [ Pg.185 ]




SEARCH



Equilibrium parameter

Langmuir equilibrium

Langmuir parameters

Langmuir system, equilibrium

System parameters

Systems equilibrium

© 2024 chempedia.info