Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Langevin equation times

With the fomi of free energy fiinctional prescribed in equation (A3.3.52). equation (A3.3.43) and equation (A3.3.48) respectively define the problem of kinetics in models A and B. The Langevin equation for model A is also referred to as the time-dependent Ginzburg-Landau equation (if the noise temi is ignored) the model B equation is often referred to as the Calm-Flilliard-Cook equation, and as the Calm-Flilliard equation in the absence of the noise temi. [Pg.738]

Kramers solution of the barrier crossing problem [45] is discussed at length in chapter A3.8 dealing with condensed-phase reaction dynamics. As the starting point to derive its simplest version one may use the Langevin equation, a stochastic differential equation for the time evolution of a slow variable, the reaction coordinate r, subject to a rapidly statistically fluctuating force F caused by microscopic solute-solvent interactions under the influence of an external force field generated by the PES F for the reaction... [Pg.848]

The key quantity in barrier crossing processes in tiiis respect is the barrier curvature Mg which sets the time window for possible influences of the dynamic solvent response. A sharp barrier entails short barrier passage times during which the memory of the solvent environment may be partially maintained. This non-Markov situation may be expressed by a generalized Langevin equation including a time-dependent friction kernel y(t) [ ]... [Pg.852]

To improve the accuracy of the solution, the size of the time step may be decreased. The smaller is the time step, the smaller are the assumed errors in the trajectory. Hence, in contrast (for example) to the Langevin equation that includes the friction as a phenomenological parameter, we have here a systematic way of approaching a microscopic solution. Nevertheless, some problems remain. For a very large time step, it is not clear how relevant is the optimal trajectory to the reality, since the path variance also becomes large. Further-... [Pg.273]

Langevin dynamics simulates the effect of molecular collisions and the resulting dissipation of energy that occur in real solvents, without explicitly including solvent molecules. This is accomplished by adding a random force (to model the effect of collisions) and a frictional force (to model dissipative losses) to each atom at each time step. Mathematically, this is expressed by the Langevin equation of motion (compare to Equation (22) in the previous chapter) ... [Pg.91]

When the friction coefficient is set to zero, HyperChem performs regular molecular dynamics, and one should use a time step that is appropriate for a molecular dynamics run. With larger values of the friction coefficient, larger time steps can be used. This is because the solution to the Langevin equation in effect separates the motions of the atoms into two time scales the short-time (fast) motions, like bond stretches, which are approximated, and longtime (slow) motions, such as torsional motions, which are accurately evaluated. As one increases the friction coefficient, the short-time motions become more approximate, and thus it is less important to have a small timestep. [Pg.93]

The last two results are rather similar to the quadratic forms given by Fox and Uhlenbeck for the transition probability for a stationary Gaussian-Markov process, their Eqs. (20) and (22) [82]. Although they did not identify the parity relationships of the matrices or obtain their time dependence explicitly, the Langevin equation that emerges from their analysis and the Doob formula, their Eq. (25), is essentially equivalent to the most likely terminal position in the intermediate regime obtained next. [Pg.13]

That the terminal acceleration should most likely vanish is true almost by definition of the steady state the system returns to equilibrium with a constant velocity that is proportional to the initial displacement, and hence the acceleration must be zero. It is stressed that this result only holds in the intermediate regime, for x not too large. Hence and in particular, this constant velocity (linear decrease in displacement with time) is not inconsistent with the exponential return to equilibrium that is conventionally predicted by the Langevin equation, since the present analysis cannot be extrapolated directly beyond the small time regime where the exponential can be approximated by a linear function. [Pg.20]

Many solvents do not possess the simple structure that allows their effects to be modeled by the Langevin equation or generalized Langevin equation used earlier to calculate the TS trajectory [58, 111, 112]. Instead, they must be described in atomistic detail if their effects on the effective free energies (i.e., the time-independent properties) and the solvent response (i.e., the nonequilibrium or time-dependent properties) associated with the... [Pg.232]

The specific form of the short-time transition probability depends on the type of dynamics one uses to describe the time evolution of the system. For instance, consider a single, one-dimensional particle with mass m evolving in an external potential energy V(q) according to a Langevin equation in the high-friction limit... [Pg.253]

The equation of motion for the position vector Ra,- of the ith segment of the chain a at time t is given by the Langevin equation,... [Pg.7]

Since l is proportional to and q is proportional to 1/L, i is proportional to. Substitution of Eq. (67) into Eq.(62) gives the Langevin equation for the Rouse modes of the chain within the approximations of preaveraging for hydrodynamic interactions and mode-mode decoupling for intersegment potential interactions. Equation (62) yields the following results for relaxation times and various dynamical correlation functions. [Pg.15]

Third, Eq. (31) shows that A is nondistributive, and determines fluctuations. Since there is a flucmation, we can expect that the time evolution in Eq. (34) may be related to a stochastic process. Indeed, one can show that the time evolution (34) is identical to the time evolution generated by the set of Langevin equations for the stochastic operators aj(r), a (r) (see Ref. 14) ... [Pg.142]

Constraints may be introduced either into the classical mechanical equations of motion (i.e., Newton s or Hamilton s equations, or the corresponding inertial Langevin equations), which attempt to resolve the ballistic motion observed over short time scales, or into a theory of Brownian motion, which describes only the diffusive motion observed over longer time scales. We focus here on the latter case, in which constraints are introduced directly into the theory of Brownian motion, as described by either a diffusion equation or an inertialess stochastic differential equation. Although the analysis given here is phrased in quite general terms, it is motivated primarily by the use of constrained mechanical models to describe the dynamics of polymers in solution, for which the slowest internal motions are accurately described by a purely diffusive dynamical model. [Pg.67]

If Xe is somewhat larger, then there may arise an effective time scale Xr > Xe, with 5, < Xr sueh that the environment has some memory of the particle s previous history and therefore responds accordingly. This is the regime of the generalized Langevin equation (GLE) with colored friction. - In all these cases, the environment is sufficiently large that the particle is unable to affect the environment s equilibrium properties. Likewise, the environment is noninteracting with the rest of the universe such that its properties are independent of the absolute time. All of these systems, therefore, describe the dynamics of a stochastic particle in a stationary —albeit possibly colored— environment. [Pg.92]


See other pages where Langevin equation times is mentioned: [Pg.694]    [Pg.697]    [Pg.741]    [Pg.55]    [Pg.93]    [Pg.405]    [Pg.275]    [Pg.438]    [Pg.89]    [Pg.89]    [Pg.90]    [Pg.115]    [Pg.206]    [Pg.207]    [Pg.208]    [Pg.208]    [Pg.169]    [Pg.297]    [Pg.341]    [Pg.361]    [Pg.362]    [Pg.209]    [Pg.232]    [Pg.345]    [Pg.33]    [Pg.140]    [Pg.166]    [Pg.42]    [Pg.41]    [Pg.118]    [Pg.129]    [Pg.89]    [Pg.59]    [Pg.71]    [Pg.93]   
See also in sourсe #XX -- [ Pg.324 ]




SEARCH



Equation Langevine

Langevin

Langevin equation

Langevin equation relaxation time calculations

Langevin equation relaxation times

Langevin equation time evolution

Langevin equation time-scale separation

Molecular-time-scale generalized Langevin equation

© 2024 chempedia.info