Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Langevin equation solutions

If we now average the Langevin equation, (A3.1.56). we obtam a very simple equation for (v(0), whose solution is clearly... [Pg.688]

Kramers solution of the barrier crossing problem [45] is discussed at length in chapter A3.8 dealing with condensed-phase reaction dynamics. As the starting point to derive its simplest version one may use the Langevin equation, a stochastic differential equation for the time evolution of a slow variable, the reaction coordinate r, subject to a rapidly statistically fluctuating force F caused by microscopic solute-solvent interactions under the influence of an external force field generated by the PES F for the reaction... [Pg.848]

The LIN method ( Langevin/Implicit/Normal-Modes ) combines frequent solutions of the linearized equations of motions with anharmonic corrections implemented by implicit integration at a large timestep. Namely, we express the collective position vector of the system as X t) = Xh t) + Z t). (In LN, Z t) is zero). The first part of LIN solves the linearized Langevin equation for the harmonic reference component of the motion, Xh t)- The second part computes the residual component, Z(t), with a large timestep. [Pg.246]

We further discuss how quantities typically measured in the experiment (such as a rate constant) can be computed with the new formalism. The computations are based on stochastic path integral formulation [6]. Two different sources for stochasticity are considered. The first (A) is randomness that is part of the mathematical modeling and is built into the differential equations of motion (e.g. the Langevin equation, or Brownian dynamics). The second (B) is the uncertainty in the approximate numerical solution of the exact equations of motion. [Pg.264]

To improve the accuracy of the solution, the size of the time step may be decreased. The smaller is the time step, the smaller are the assumed errors in the trajectory. Hence, in contrast (for example) to the Langevin equation that includes the friction as a phenomenological parameter, we have here a systematic way of approaching a microscopic solution. Nevertheless, some problems remain. For a very large time step, it is not clear how relevant is the optimal trajectory to the reality, since the path variance also becomes large. Further-... [Pg.273]

When the friction coefficient is set to zero, HyperChem performs regular molecular dynamics, and one should use a time step that is appropriate for a molecular dynamics run. With larger values of the friction coefficient, larger time steps can be used. This is because the solution to the Langevin equation in effect separates the motions of the atoms into two time scales the short-time (fast) motions, like bond stretches, which are approximated, and longtime (slow) motions, such as torsional motions, which are accurately evaluated. As one increases the friction coefficient, the short-time motions become more approximate, and thus it is less important to have a small timestep. [Pg.93]

Brownian motion theory may be generalized to treat systems with many interacting B particles. Such many-particle Langevin equations have been investigated at a molecular level by Deutch and Oppenheim [58], A simple system in which to study hydrodynamic interactions is two particles fixed in solution at a distance Rn- The Langevin equations for the momenta P, (i = 1,2)... [Pg.118]

Lagrange multipliers 255-256 Lagrange s moan-value theorem 30-32 Lagperre polynomials 140, 360 Lambert s law 11 Langevin function 61n Laplace transforms 279—286 convolution 283-284 delta function 285 derivative of a function 281-282 differential equation solutions 282-283... [Pg.206]

The earliest and simplest approach in this direction starts from Langevin equations with solutions comprising a spectrum of relaxation modes [1-4], Special features are the incorporation of entropic forces (Rouse model, [6]) which relax fluctuations of reduced entropy, and of hydrodynamic interactions (Zimm model, [7]) which couple segmental motions via long-range backflow fields in polymer solutions, and the inclusion of topological constraints or entanglements (reptation or tube model, [8-10]) which are mutually imposed within a dense ensemble of chains. [Pg.3]

In the GH theory, it is assumed that the reaction barrier is parabolic in the neighborhood of x and that the solute reactive coordinate satisfies a generalized Langevin equation (GLE),... [Pg.233]

The treatment of the solute-solvent system with the classical Generalized Langevin equation formalism [127], with especial attention to the present problem, has been examined by us [6] a wealth of information can be found in references [128-131],... [Pg.301]

The set of equations (50) can be formally considered as generalized Langevin equations if the operator Fj(t) can be interpreted as a stochastic quantity in the statistical mechanical sense. If the memory function does not correlate different solute modes, namely, if Kjj =Sjj Kj, then a Langevin-type equation follows for each mode ... [Pg.307]

Analogous to the derivation of the effective Langevin equation for the chain in dilute solutions, we get in semidilute solutions... [Pg.40]

Constraints may be introduced either into the classical mechanical equations of motion (i.e., Newton s or Hamilton s equations, or the corresponding inertial Langevin equations), which attempt to resolve the ballistic motion observed over short time scales, or into a theory of Brownian motion, which describes only the diffusive motion observed over longer time scales. We focus here on the latter case, in which constraints are introduced directly into the theory of Brownian motion, as described by either a diffusion equation or an inertialess stochastic differential equation. Although the analysis given here is phrased in quite general terms, it is motivated primarily by the use of constrained mechanical models to describe the dynamics of polymers in solution, for which the slowest internal motions are accurately described by a purely diffusive dynamical model. [Pg.67]

In the presence of noise, the solution to the linear Langevin equation (11) is (see Appendix A, and also Eq. (3-5) of the article by Einstein in this proceedings). [Pg.18]

Acknowledgements This work was supported by the NSF under grant DMR-9312839. Appendix A - Solution to the linear Langevin equation. [Pg.257]

The standard language used to describe rate phenomena in condensed phases has evolved from Kramers one dimensional model of a particle moving on a one dimensional potential, feeling a random and a related friction force. In Section II, we will review the classical Generalized Langevin Equation (GEE) underlying Kramers model and its application to condensed phase systems. The GLE has an equivalent Hamiltonian representation in terms of a particle which is bilinearly coupled to a harmonic bath. The Hamiltonian representation, also reviewed in Section II is the basis for a quantum representation of rate processes in condensed phases. Eas also been very useful in obtaining solutions to the classical GLE. Variational estimates for the classical reaction rate are described in Section III. [Pg.2]

The velocity relaxation time is again f/rn and the mean square velocity (up = k T/m. Schell et al. [272] have used the Langevin equation to model recombination of reactants in solutions. Finally, from the properties of the fluctuating force (see above)... [Pg.328]

Adelman [530] and Stillman and Freed [531] have discussed the reduction of the generalised Langevin equation to a generalised Fokker— Planck equation, which provides a description of the probability that a molecule has a velocity u at a position r at a time t, given certain initial conditions (see Sect. 3.2.). The generalised Fokker—Planck equation has important differences by comparison with the (Markovian) Fokker— Planck equation (287). However, it has not proved so convenient a vehicle for studies of chemical reactions in solution as the generalised Langevin equation (290). [Pg.334]

Hynes et al. [298] and later Schell et al. [272] have developed a numerical simulation method for the recombination of iodine atoms in solution. The motions of iodine atoms was governed by a Langevin equation, though spatially dependent friction coefficients could be introduced to increase solvent structure. The force acting on iodine atoms was obtained from the mutual potential energy of interaction, represented by a Morse potential and the solvent static potential of mean force. The solvent and iodine atoms were regarded as hard spheres. The probability of reaction was calculated by following many trajectories until reaction had occurred or was most improbable. The importance of the potential of... [Pg.336]

In a stochastic approach, one replaces the difficult mechanical equations by stochastic equations, such as a diffusion equation, Langevin equation, master equation, or Fokker-Planck equations.5 These stochastic equations have fewer variables and are generally much easier to solve than the mechanical equations, One then hopes that the stochastic equations include the significant aspects of the physical equations of motion, so that their solutions will display the relevant features of the physical motion. [Pg.80]

The equivalence of the Langevin equation (1.1) to the Fokker-Planck equation (VIII.4.6) for the velocity distribution of our Brownian particle now follows simply by inspection. The solution of (VIII.4.6) was also a Gaussian process, see (VIII.4.10), and its moments (VIII.4.7) and (VIII.4.8) are the same as the present (1.5) and (1.6). Hence the autocorrelation function (1.8) also applies to both, so that both solutions are the same process. Q.E.D. [Pg.226]

In order to complete the above analysis, one needs to solve the full non-Markovian Langevin equation (NMLE) with the frequency-dependent friction for highly viscous liquids to obtain the rate. This requires extensive numerical solution because now the barrier crossing dynamics and the diffusion cannot be treated separately. However, one may still write phenomenologically the rate as [172],... [Pg.191]


See other pages where Langevin equation solutions is mentioned: [Pg.696]    [Pg.365]    [Pg.93]    [Pg.404]    [Pg.57]    [Pg.438]    [Pg.89]    [Pg.208]    [Pg.12]    [Pg.285]    [Pg.209]    [Pg.232]    [Pg.57]    [Pg.120]    [Pg.124]    [Pg.118]    [Pg.69]    [Pg.539]    [Pg.214]    [Pg.253]    [Pg.334]    [Pg.339]    [Pg.557]    [Pg.126]    [Pg.181]    [Pg.250]    [Pg.5]   
See also in sourсe #XX -- [ Pg.456 ]

See also in sourсe #XX -- [ Pg.456 ]




SEARCH



Equation Langevine

Langevin

Langevin equation

Langevin equation numerical solutions

Langevin equation stationary solution

The generalised Langevin equation and reactions in solution

© 2024 chempedia.info