Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lamellar phases vesicles

Figure 1. Schematic model of lamellar phase vesicle. Figure 1. Schematic model of lamellar phase vesicle.
Vesicles [10, 11] these aggregates of insoluble natural or artificial amphiphiles in water can have various shapes (spherical, cylindrical). Depending on the preparation conditions, small unilamellar or large multilamellar vesicles can be produced. The structures meet the self-organization criterion, because they are, albeit on a long time scale, dynamic and not in thermodynamic equilibrium, which would in many cases be a macroscopically phase separated lamellar phase. [Pg.188]

Lamellar phases of phospholipids often exhibit myehnic figures when contacted with water. Electron micrographs [24,26] showed that each tubular myehnic figure in the egg-yolk phosphatidylcholine/water system consisted of a water core surrounded by many concentric bilayers. More recently Raman spectroscopy techniques have confirmed the concentric bilayer arrangement [1,18]. Myelinic figures are not equilibrium structures, however, and eventually break up to form vesicles or other lamellar structures. Indeed, adding water to a vessel whose inner walls are coated with a thin layer of a lamellar phase of low water content is a well-known way of forming vesicles. [Pg.17]

When lamellar phases are sheared, e.g. by flowing through a narrow tube, the membranes are disrupted and the resulting fragments close to form spherical shells, termed vesicles [4]. These vesicles can consist of a single shell... [Pg.254]

Escalante J, Gradzielski M, Mortensen K, Hoffmann H (2000) The shear induced transition of an originally undisturbed lamellar phase to a vesicle phase. Langmuir 16(23) 8653... [Pg.259]

Fig. 1 a-f. Various forms of surfactant aggregations in solution a Monolayer b bilayer c liquid crystalline phase (lamellar) d vesicle (liposome) e micelle f reverse micelle. (Reproduced from [39] with permission of PL Luisi)... [Pg.127]

Bilayers are preferentially formed for Ns = 0.5...1. Lipids that form bilayers cannot pack into micellar or cylindrical structures because of their small head group area and because their alkyl chains are too bulky to fit into a micelle. For bilayer-forming lipids this requires that for the same head group area a a, and chain length Lc, the alkyl chains must have twice the volume. For this reason lipids with two alkyl chains are likely to form bilayers. Examples are double-chained phospholipids such as phophatidyl choline or phophatidyl ethanolamine. Lipids with surfactant parameters slightly below 1 tend to form flexible bilayers or vesicles. Lipids with Ns = 1 form real planar bilayers. At high lipid concentration this leads to a so-called lamellar phase. A lamellar phase consist of stacks of roughly parallel planar bilayers. In some cases more complex, bicontinuous structures are also formed. As indicated by the name, bicontinuous structures consist of two continuous phases. [Pg.257]

Paspaleeva-Kuhn, V., and E. Nurnberg. 1992. Participation of Macrogolstearate 400 lamellar phases in hydrophilic creams and vesicles. Pharm Res 9 1336. [Pg.275]

Experiments by Muller et al. [17] on the lamellar phase of a lyotropic system (an LMW surfactant) under shear suggest that multilamellar vesicles develop via an intermediate state for which one finds a distribution of director orientations in the plane perpendicular to the flow direction. These results are compatible with an undulation instability of the type proposed here, since undulations lead to such a distribution of director orientations. Furthermore, Noirez [25] found in shear experiment on a smectic A liquid crystalline polymer in a cone-plate geometry that the layer thickness reduces slightly with increasing shear. This result is compatible with the model presented here as well. [Pg.140]

Figure 4.14 Micellar structures, (a) Spherical (anionic) micelle. This is the usual shape at surfactant concentrations below about 40 per cent, (b) Spherical vesicle bilayer structure (see also Figure 4.28), which is representative of the living cell, (c) and (d) Hexagonal and lamellar phases formed from cylindrical and laminar micelles, respectively. These, and other structures, exist in highly concentrated surfactant solutions... Figure 4.14 Micellar structures, (a) Spherical (anionic) micelle. This is the usual shape at surfactant concentrations below about 40 per cent, (b) Spherical vesicle bilayer structure (see also Figure 4.28), which is representative of the living cell, (c) and (d) Hexagonal and lamellar phases formed from cylindrical and laminar micelles, respectively. These, and other structures, exist in highly concentrated surfactant solutions...
Figure 3.16 Schematic of different lamellar phases (a) stacked lamellar phase, (b) vesicle and (c) l 3 phase the grey area consists of a surfactant double layer similar to those in (a). Figure 3.16 Schematic of different lamellar phases (a) stacked lamellar phase, (b) vesicle and (c) l 3 phase the grey area consists of a surfactant double layer similar to those in (a).
Considerations of the packing parameter concept of Israelachvili et al. [1] suggest that double-chain surfactants, which form the basis of measurements described in this article, cannot readily form spherical micelles. With double-chain surfactants, a more likely aggregate structure is the formation of bilayer vesicles, which can be also thought of as a dispersed lamellar phase (La) as such the vesicular dispersed form is likely to be preferentially formed at low concentrations ( 1 mmol dm-3) of surfactant. Furthermore, it is necessary to consider the possibility, unlike in the case of micelles, that such vesicles, formed by self-assembly of surfactant monomers, will not be thermodynamically stable. The instability is then likely to be in the direction of growth to a thermodynamically-stable lamellar phase from the vesicles. This process will be driven, at least initially, by fusion of two vesicles. [Pg.684]

A liquid crystal is a general term used to describe a variety of anisotropic structures formed by amphiphilic molecules, typically but not exclusively at high concentrations. Hexagonal, lamellar, and cubic phases are all examples of liquid crystalline phases. These phases have been examined as drug delivery systems because of their stability, broad solubilization potential, ability to delay the release of encapsulated drug, and, in the case of lamellar phases, their ability to form closed, spherical bilayer structures known as vesicles, which can entrap both hydrophobic and hydrophilic drug. This section will review SANS studies performed on all liquid crystalline phases, except vesicles, which will be considered separately. Vesicles will be considered separately because, with a few exceptions, generally mixed systems, vesicles (unlike the other liquid crystalline phases mentioned) do not form spontaneously upon dispersal of the surfactant in water and because there have been many more SANS studies performed on these systems. [Pg.1057]

In addition to the equilibrium phase structures mentioned above, non-equilibrium surfactant phase structures exist thatare also finding applications in drug delivery. Vesicular forms of surfactants are generally formed by dispersing lamellar phases in an excess of water (or non-aqueous polar solvents such as ethylene glycol or dimethylformamide) or, in the case of reversed vesicles, in an excess of oil. With most surfactants, vesicles are non-equilibrium structures that will eventually re-equilibrate back into the lamellar phases from which they originated. Vesicles are structural analogs of liposomes (discussed later) they are approximately spherical structures and have the ability... [Pg.3586]

Another force [57, 58] occurs in a multilayered system, like a swollen lamellar phase of surfactant bilayers or phospholipid vesicles. Shape fluctuations in the bilayers can give rise to steric effects that are supposed to stabilise such systems where the van der Waals and double-layer forces are very weak, as they often are. The magnitude of such fluctuations depends on the "stiffness" of die bilayer. The status of these forces is the subject of an active debate and imclear. [Pg.112]

This potential force occurs in microstructured fluids like microemulsions, in cubic phases, in vesicle suspensions and in lamellar phases, anywhere where an elastic or fluid boundary exists. Real spontaneous fluctuations in curvature exist, and in liposomes they can be visualised in video-enhtuiced microscopy [59]. Such membrane fluctuations have been invoked as a mechanism to account for the existence of oil- or water-swollen lamellar phases. Depending on the natural mean curvature of the monolayers boimding an oil region - set by a mixture of surfactant and alcohol at zero -these swollen periodic phases can have oil regions up to 5000A thick With large fluctuations the monolayers are supposed to be stabilised by steric hindrance. Such fluctuations and consequent steric hindrance play some role in these systems and in a complete theory of microemulsion formation. [Pg.112]

If we come back to smaller (single-walled) vesicles, we are on more familiar ground. The experimental situation is nevertheless unresolved. Some believe that vesicles are always thermodynamically unstable, the stable state being the lamellar phase. Monodisperse vesicles of the size given by simple... [Pg.210]

Summary PDMS-6-PEO short-chain diblock copolymers were prepared via anionic ring-opening polymerization of cyclosiloxanes. Applying this method, various well-defined block copolymers with different compositions were synthesized and their phase behavior was investigated. The polymers predominantly showed lamellar phases in aqueous solutions. At small surfactant concentrations, vesicles were formed, as observed via cryogenic TEM. The aggregates of the diblock copolymers were used for the formation of lamellar thin films, applying the evaporation-induced self-assembly approach. [Pg.818]


See other pages where Lamellar phases vesicles is mentioned: [Pg.194]    [Pg.194]    [Pg.2382]    [Pg.662]    [Pg.26]    [Pg.30]    [Pg.189]    [Pg.282]    [Pg.255]    [Pg.282]    [Pg.107]    [Pg.411]    [Pg.102]    [Pg.132]    [Pg.30]    [Pg.164]    [Pg.85]    [Pg.313]    [Pg.86]    [Pg.195]    [Pg.109]    [Pg.693]    [Pg.19]    [Pg.926]    [Pg.27]    [Pg.1054]    [Pg.118]    [Pg.207]    [Pg.209]    [Pg.210]    [Pg.210]    [Pg.211]   
See also in sourсe #XX -- [ Pg.418 ]

See also in sourсe #XX -- [ Pg.418 ]




SEARCH



Lamellarity

Phase lamellar

© 2024 chempedia.info