Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lactones, addition

Epoxides provide another useful a -synthon. Nucleophilic ring opening with dianions of carboxylic acids (P.L. Creger, 1972) leads to y-hydroxy carboxylic acids or y-lactones. Addition of imidoester anions to epoxides yields y-hydroxyaldehyde derivatives after reduction (H.W. Adickes, 1969). [Pg.63]

The Conversion of Alkenes to y-Lactones (Addition of Oxygen, Carbon)... [Pg.1059]

The fust important test of this methodology came in Hanessian s investigation of the spiroketal portion of avermectin Bu- This highly convergent approach incorporates all the oxidation levels and functionality required for carbons C(15)-C(28), except for the necessity of alkyne to alkene conversion. The lithium alkynide was prepared at -78 C and then mixed with boron trifluoride etherate under the conditions of Yamaguchi (Scheme 19). (Direct condensation of the lithium salt and lactone lead to substantial amounts of a, -unsaturated lactone.) Addition of the lactone in stoichiometric amounts to the solution of the modified alkynide led to the formation of the desired hemiketal in acceptable yield. Further improvements could be obtained by the recycling of starting material. ... [Pg.419]

Lactones, addition of thiols 769 Lead, thiol derivatives 748, 749 Lipoic acid 637-639 Lithiation, of 1,3-dithiane 536 of 1,3,5-trithiane 546, 547 2-Lithio-l,3-dithianes, for preparation of 1-deuterioaldehydes 547 for preparation of orthothioformate 547... [Pg.241]

Scheme 18.34 Formal [4+2]/lactonization/addition reaction, according to Lupton and... Scheme 18.34 Formal [4+2]/lactonization/addition reaction, according to Lupton and...
The regioselectivity of the addition of terminal alkynes to epoxides is improved, when the reagents prepared from the lithiated alkynes and either trifluoroborane or chlorodiethyl-aluminum arc employed (M. Yamaguchi, 1983 S. Danishefsky, 1976). (Ethoxyethynyl)lithium-trifluoroborane (1 1) is a convenient reagent for converting epoxides to y-lactones (M. Naka-tsuka, 1990 see p. 327f. cf. S. Danishefsky, 1976). [Pg.64]

The conversion of carboxylic acid derivatives (halides, esters and lactones, tertiary amides and lactams, nitriles) into aldehydes can be achieved with bulky aluminum hydrides (e.g. DIBAL = diisobutylaluminum hydride, lithium trialkoxyalanates). Simple addition of three equivalents of an alcohol to LiAlH, in THF solution produces those deactivated and selective reagents, e.g. lithium triisopropoxyalanate, LiAlH(OPr )j (J. Malek, 1972). [Pg.96]

The synthesis of five-, six-, and seven-membered cyclic esters or timides uses intramolecular condensations under the same reaction condifions as described for intermolecular reactions. Yields are generally excellent. An example from the colchicine synthesis of E.E. van Ta-melen (1961) is given below. The synthesis of macrocyclic lactones (macrolides) and lactams (n > 8), however, which are of considerable biochemical and pharmacological interest, poses additional problems because of competing intermolecular polymerization reactions (see p. 246ff.). Inconveniently high dilution, which would be necessary to circumvent this side-... [Pg.145]

Alkynes undergo stoichiometric oxidative reactions with Pd(II). A useful reaction is oxidative carboiiyiation. Two types of the oxidative carbonyla-tion of alkynes are known. The first is a synthesis of the alkynic carbox-ylates 524 by oxidative carbonylation of terminal alkynes using PdCN and CuCh in the presence of a base[469], Dropwise addition of alkynes is recommended as a preparative-scale procedure of this reation in order to minimize the oxidative dimerization of alkynes as a competitive reaction[470]. Also efficient carbonylation of terminal alkynes using PdCU, CuCI and LiCi under CO-O2 (1 I) was reported[471]. The reaction has been applied to the synthesis of the carbapenem intermediate 525[472], The steroidal acetylenic ester 526 formed by this reaction undergoes the hydroarylalion of the triple bond (see Chapter 4, Section 1) with aryl iodide and formic acid to give the lactone 527(473],... [Pg.97]

The benzoic acid derivative 457 is formed by the carbonylation of iodoben-zene in aqueous DMF (1 1) without using a phosphine ligand at room temperature and 1 atm[311]. As optimum conditions for the technical synthesis of the anthranilic acid derivative 458, it has been found that A-acetyl protection, which has a chelating effect, is important[312]. Phase-transfer catalysis is combined with the Pd-catalyzed carbonylation of halides[3l3]. Carbonylation of 1,1-dibromoalkenes in the presence of a phase-transfer catalyst gives the gem-inal dicarboxylic acid 459. Use of a polar solvent is important[314]. Interestingly, addition of trimethylsilyl chloride (2 equiv.) increased yield of the lactone 460 remarkabiy[3l5]. Formate esters as a CO source and NaOR are used for the carbonylation of aryl iodides under a nitrogen atmosphere without using CO[316]. Chlorobenzene coordinated by Cr(CO)j is carbonylated with ethyl formate[3l7]. [Pg.190]

In the presence of a double bond at a suitable position, the CO insertion is followed by alkene insertion. In the intramolecular reaction of 552, different products, 553 and 554, are obtained by the use of diflerent catalytic spe-cies[408,409]. Pd(dba)2 in the absence of Ph,P affords 554. PdCl2(Ph3P)3 affords the spiro p-keto ester 553. The carbonylation of o-methallylbenzyl chloride (555) produced the benzoannulated enol lactone 556 by CO, alkene. and CO insertions. In addition, the cyclobutanone derivative 558 was obtained as a byproduct via the cycloaddition of the ketene intermediate 557[4I0]. Another type of intramolecular enone formation is used for the formation of the heterocyclic compounds 559[4l I]. The carbonylation of the I-iodo-1,4-diene 560 produces the cyclopentenone 561 by CO. alkene. and CO insertions[409,4l2]. [Pg.204]

The a-bromo-7-lactone 901 undergoes smooth coupling with the acetonyltin reagent 902 to afford the o-acetonyl-7-butyrolactone 903[763j. The o-chloro ether 904, which has no possibility of //-elimination after oxidative addition, reacts with vinylstannane to give the allyl ether 905, The o -bromo ether 906 is also used for the intramolecular alkyne insertion and transmetallation with allylstannane to give 907[764],... [Pg.261]

The reaction of perfluoroalkyl iodides with alkenes affords the perfluoro-alkylated alkyl iodides 931. Q.a-Difluoro-functionalized phosphonates are prepared by the addition of the iododifluoromethylphosphonate (932) at room temperature[778], A one-electron transfer-initiated radical mechanism has been proposed for the addition reaction. Addition to alkynes affords 1-perfluoro-alkyl-2-iodoalkenes (933)[779-781]. The fluorine-containing oxirane 934 is obtained by the reaction of allyl aicohol[782]. Under a CO atmosphere, the carbocarbonylation of the alkenol 935 and the alkynol 937 takes place with perfluoroalkyl iodides to give the fluorine-containing lactones 936 and 938[783]. [Pg.264]

The unsaturated c.vo-enol lactone 17 is obtained by the coupling of propargylic acetate with 4-pentynoic acid in the presence of KBr using tri(2-furyl)-phosphine (TFP) as a ligand. The reaction is explained by the oxypalladation of the triple bond of 4-pentynoic acid with the ailenyipailadium and the carbox-ylate as shown by 16, followed by reductive elimination to afford the lactone 17. The ( -alkene bond is formed because the oxypalladation is tnins addition[8]. [Pg.455]

We conclude this section by citing some examples of ring-opening polymerizations. Table 5.9 lists several examples of ring-opening polymerizations. In addition to the reactions listed, we recall the polymerizations of lactones and lactams exemplified by equations in Table 5.3 and 5.4, respectively. [Pg.332]

Simple olefins do not usually add well to ketenes except to ketoketenes and halogenated ketenes. Mild Lewis acids as well as bases often increase the rate of the cyclo addition. The cycloaddition of ketenes to acetylenes yields cyclobutenones. The cycloaddition of ketenes to aldehydes and ketones yields oxetanones. The reaction can also be base-cataly2ed if the reactant contains electron-poor carbonyl bonds. Optically active bases lead to chiral lactones (41—43). The dimerization of the ketene itself is the main competing reaction. This process precludes the parent compound ketene from many [2 + 2] cyclo additions. Intramolecular cycloaddition reactions of ketenes are known and have been reviewed (7). [Pg.474]

DimeriZa.tlon. A special case of the [2 + 2] cyclo additions is the dimerization of ketenes. Of the six possible isomeric stmctures, only the 1,3-cyclobutanediones and the 2-oxetanones (P-lactones) are usually formed. Ketene itself gives predominandy (80—90%) the lactone dimer, 4-methylene-2-oxetanone (3), called diketene [674-82-8], approximately 5% is converted to the symmetrical dimer, 1,3-cyclobutanedione [15506-53-3] (4) which undergoes enol-acetylation to so-called triketene [38425-52-4] (5) (44). [Pg.474]

Ketene can also be added to trihalosubstituted aldehydes or ketones (12) to form 4-trihalomethyloxetanones. If this addition is performed in the presence of optically active bases such as quinine [130-95-0] chiral lactones are obtained (41,42). [Pg.477]

The chemical properties of cycHc ketones also vary with ring size. Lower members (addition reactions, than corresponding acycHc ketones. The Cg—C 2 ketones are unreactive, reflecting the strain and high enol content of medium-sized ring systems. Lactones are prepared from cycHc ketones by the Bayer-ViUiger oxidation reaction with peracids. S-Caprolactone is manufactured from cyclohexane by this process ... [Pg.500]

Knoevenagel condensation of malonic acid with heptaldehyde [111-71-7] followed by ring closure, gives the fragrance y-nonanoic lactone [104-61-0] (6) (14). Beside organic synthesis, malonic acid can also be used as electrolyte additive for anodization of aluminum [7429-90-5] (15), or as additive in adhesive compositions (16). [Pg.466]


See other pages where Lactones, addition is mentioned: [Pg.836]    [Pg.104]    [Pg.268]    [Pg.301]    [Pg.419]    [Pg.110]    [Pg.210]    [Pg.316]    [Pg.320]    [Pg.322]    [Pg.324]    [Pg.346]    [Pg.469]    [Pg.473]    [Pg.476]    [Pg.498]    [Pg.241]    [Pg.478]    [Pg.32]    [Pg.244]    [Pg.400]   
See also in sourсe #XX -- [ Pg.250 ]

See also in sourсe #XX -- [ Pg.250 ]

See also in sourсe #XX -- [ Pg.250 ]




SEARCH



© 2024 chempedia.info